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Abstract— The Flexible Job Shop Co-Scheduling Problem
(FJCSP), which integrates machine operations with Automated
Guided Vehicle (AGV) routing, represents a highly complex on-
line scheduling challenge under stringent real-time constraints.
Traditional optimization methods, while capable of producing
high-quality schedules, are computationally prohibitive for
online decision-making, whereas rule-based methods offer rapid
responsiveness but yield unstable performance. To address this
trade-off, we propose a reinforcement learning (RL)-driven
hybrid framework that selectively applies NSGA-II optimiza-
tion to a limited set of critical operations, while dispatching
rules govern the remaining tasks. An RL agent dynamically
adjusts the number of optimized operations to balance so-
lution quality against computational efficiency. Experimental
validation in a digital twin environment demonstrates that the
proposed approach significantly reduces due date violations
and makespan compared to pure rule-based scheduling, while
achieving performance close to full NSGA-II optimization with
more than 50

I. INTRODUCTION

The integration of Flexible Manufacturing Systems (FMS)
with Automated Guided Vehicles (AGVs) transforms the
classical Flexible Job Shop Scheduling Problem (FJSP) into
the more complex Flexible Job Shop Co-Scheduling Problem
(FJCSP), where machine operations and AGV routing must
be coordinated simultaneously. This NP-hard problem is
critical in modern production environments such as semicon-
ductor manufacturing and automated container terminals.

Although extensive studies have addressed FJSP and its
variants, most existing approaches suffer from a fundamental
limitation: they operate offline and cannot adapt to real-
time changes. As a result, they are unsuitable for highly
dynamic shop-floor environments where decisions must be
made within milliseconds. Early methods using Petri nets [1]
or MILP [2] had limited scalability. Metaheuristics [3], [4]
improved performance but remain offline. However, even the
most advanced algorithms still require prohibitive computa-
tion time, which is impractical for real-time applications.

We propose a fundamentally different approach: instead
of optimizing all operations, we adaptively select at most
Nmax critical operations for multi-objective optimization,
while applying efficient dispatching rules to the rest. The key
research question is: Can online co-scheduling be achieved
by dynamically adjusting Npax to balance solution quality
with real-time responsiveness?

Our hybrid optimization-rule framework employs rein-
forcement learning to determine Ny, based on the observed

system state. Critical operations are optimized with NSGA-
IT (hard commitments), while routine operations follow dis-
patching rules (soft assignments). This approach preserves
solution quality close to full NSGA-II optimization while
reducing computation time by more than half, demonstrating
its potential to satisfy real-time scheduling requirements.

The main contributions of this paper are:

o A hybrid optimization-rule framework that selec-
tively applies NSGA-II to critical operations while using
rules for others

« A reinforcement learning agent that adaptively learns
Npax selection based on system state

e A dual commitment strategy ensuring reliability for
critical operations and flexibility for routine ones

o Experimental validation in a digital twin simulation,
showing significant quality improvement over rules and
more than 50% runtime reduction compared to NSGA-
I

The remainder of this paper is organized as follows.

Section III defines the FJCSP formulation. Section II reviews
related work. Section IV presents the proposed framework.
Section V reports experimental results, followed by discus-
sion and conclusion in Section ??.

II. RELATED WORK

The Flexible Job Shop Scheduling Problem (FISP),
when integrated with Automated Guided Vehicles (AGVs),
becomes the Flexible Job Shop Co-Scheduling Problem
(FICSP). This variant is more complex than the classical
FISP, and prior studies can be grouped into model-based,
metaheuristic, hybrid, AGV-specific, and learning-based ap-
proaches.

A. Model-based approaches

Early works modeled machine—~AGV scheduling with Petri
nets [1] and MILP formulations [2]. While exact, these
methods suffer from severe scalability issues, limiting their
use in dynamic shop floors.

B. Metaheuristic approaches

To improve scalability, metaheuristics such as genetic
algorithms [3], tabu search [4], and more recent designs
like CSSA [5] and EDA-ACO hybrids [6] have been pro-
posed. These methods produce high-quality solutions but
require heavy iteration, making them unsuitable for real-time
scheduling.

- 454 -



The 10™ International Conference on Consumer Electronics (ICCE) Asia

C. Hybrid algorithms

Hybrid approaches aim to balance efficiency and quality.
For example, Lacomme et al. [7] integrated machine and
AGYV scheduling in a unified framework, while Meng et
al. [8] combined CP models with metaheuristics. However,
their runtimes—seconds to tens of seconds—remain pro-
hibitive for online use.

D. AGV-focused surveys

Surveys such as Qiu et al. [9] and Vis [10] reviewed
AGYV routing and control strategies, emphasizing the need
to integrate transport resources with production scheduling.

E. Learning-based methods

Recently, reinforcement learning has been explored to
adapt under dynamic conditions. Examples include deep RL
frameworks [11], DQN-based cooperative scheduling [12],
and MARL with efficient action decoding [13]. Although
more responsive, these methods still struggle with overly
large action spaces.

F. Limitations and motivation

In summary, metaheuristics and hybrids yield quality
solutions but are too slow, while RL improves adaptability
but faces complexity issues. To bridge this gap, we propose
a hybrid optimization—rule framework: optimize at most
Npax critical operations using NSGA-II, while applying
dispatching rules (e.g., ECT, FCFES) to the rest, ensuring both
responsiveness and solution quality in real-time settings.

III. PROBLEM FORMULATION

We consider the Flexible Job Shop Co-Scheduling Prob-
lem (FJCSP) involving a set of jobs J = {Jy,...,Jn,}, a
set of machines M = {M;,..., My, }, and a set of AGVs
A={A;,...,An,}. Each job J; consists of a sequence of
operations Oj 1,...,0; N that must be processed in order.
Each operation requires processing on one of the eligible
machines and may require transportation by an AGV to the
next machine. Machines can handle at most one operation at
a time, and AGVs can transport at most one job at a time,
with transportation consisting of no-load and loaded stages.
Transportation times are assumed to be deterministic and de-
pend only on machine locations. The decision variables are as
follows: X ; m € {0,1} indicates whether operation O;; is
processed on machine M,,; Z;; 1, € {0, 1} indicates whether
operation Oj; is transported by AGV Ay; S, C7; denote
the start and completion times of processing; and S]t.’i, C’JtZ
denote the start and completion times of transportation.

The scheduling constraints are defined as follows. Each
operation must be assigned to exactly one machine and one

AGV:
S Xjim=1, Vji, M
meM
> Ziik=1, Vji. )
ke A

Job precedence must be respected, such that each operation
can only start after the transport of its predecessor is com-
pleted:

t ..
S >Chiy, Vii> 1 3)
Capacity constraints ensure that machines and AGVs cannot
execute more than one task simultaneously:
875> Cp i if Xjim = Xjirm =1, “
Sii = Cha if Zjin = Zypop = 1. ®)
The optimization objective is formulated as a multi-
objective problem:

F) = Chpax = max C?

‘ N Makespan 6)
Fy = Zdistj,i,
Jrt

Total AGV travel distance

(7

3= Zmax{O7 Cﬁi —d;;}, Due date violation )
Jrt

min{Fl,Fg,Fg,}. (9)

Here, d;; is the due date derived from release time and
processing requirements, and dist; ; is the AGV travel dis-
tance. F; penalizes violations of job due dates, F> minimizes
the overall completion time, and F3 minimizes transportation
cost. Note that the capacity constraints are conceptual; feasi-
ble schedules are generated by an SSGS-style decoder with
disjunctive no-overlap in simulation.

We adopt the following assumptions to keep the model
tractable. Each machine and AGV can process or transport
only one task at a time. Travel times between machines
are deterministic and known. Machines and AGVs may be
initially occupied, with given availability times. Jobs are
finite and known within the scheduling horizon.

Critically, we assume: (1) access to a discrete-event sim-
ulator that can handle mixed constraint specifications—it
enforces specific machine-AGV assignments for selected
operations (fixed mappings) while applying a pre-defined
default rule for others; (2) the dispatching rules are defined as
follows: for job—machine matching, the Earliest Completion
Time (ECT) rule is used, which selects the machine that
can complete the operation the earliest by considering both
the input queue and the remaining processing time of the
current task; for AGV—job matching, the First-Come, First-
Served (FCFS) rule is applied. This simulator capability
and dispatching rule policy are essential for the hybrid
execution approach. The RL agent observes the current state
and determines the appropriate Ny,.x value, while NSGA-
IT optimizes assignments for the selected critical operations
through simulation-based evaluation with the dispatching
rules handling the rest.

Traditional offline methods optimize over the entire
scheduling horizon to approximate a global optimum, which
incurs prohibitive computational cost. In contrast, our formu-
lation restricts optimization to at most Ny, candidate oper-
ations, determined by the RL agent. This strategy reduces the
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search space, enabling fast online scheduling while ensuring
that deviations from the global optimum remain controlled.
Thus, the formulation bridges offline global optimization and
online adaptive scheduling.

IV. PROPOSED METHOD

We adopt an event-driven online co-scheduling policy
that coordinates machine and AGV operations under real-
time conditions. At each decision epoch t, the controller
observes only the realized shop-floor state (running opera-
tions, machine/AGV availability, released jobs) and selects at
most Ny.x candidate operations for integrated scheduling.
This non-anticipative, incremental, and deadline-bounded
procedure meets the standard definition of online scheduling.

A. Hybrid Optimization-Rule Co-Scheduling with Nyax-
Bounded Operations

The core innovation lies in a hybrid optimization-rule ap-
proach that combines the solution quality of multi-objective
optimization with the computational efficiency of dispatching
rules. At each decision epoch ¢, the framework operates as
follows:

1. Critical Operation Selection: Instead of optimizing
all pending operations, the system identifies at most Npax
critical operations based on a scored ranking with diversity:

G(0) = a - process(o) + B - move(o)+ (10)
v - urgency(o) + d - competition(o)
a) Average Processing Time:
_ 1
process(o) = p(o) = ——— Z Dijm (11)
IMiyl &1

Here, p(0) denotes the average processing time of operation
o = (i,7) over the candidate machine set M; ;, and p; j n, is
the processing time of o on machine m € M, ;.

b) Average Transportation Time:

1

m ZmEJVIi)j Tloc(i,j)_nn*,

for currently available operations
move(o) = 7(0) =

1

[TT; 4| ZTA’GHJJ Tsre(m)—m ()

for future operations

12)

Here, 7(0) represents the average transportation time of op-
eration o = (i, 7). If the current location loc(4, j) is known, it
is defined as the average transportation time to the candidate
machines. For future operations with uncertain previous/next
positions, it is computed as the expected transportation time
averaged over the feasible route set II; ;.

¢) Urgency (Due-Date Based):

noPT
RPT,;(t)= Y (Pin+7in) (13)
h=j+1
LST; ; (t) = due; — RPT; ; (t) — Dij (14)
urgency(o,t) = max(0, t — LST; ;(t)) (15)

Here, RPT; ;(t) is the remaining processing time after oper-
ation 0 = (4, ), and LST; ;(t) is the latest start time to meet
the due date due;. The urgency measure urgency(o,t) is
defined as the deviation of the current time ¢ from LST; ;(t),
indicating how critical it is to start the operation to avoid
due-date violations.

d) Competition:

compy, = |{0o' € C:m & My}| (16)
1
competition(o) = Z comp,, — 1 17)
|Mi; meM;,;

Here, comp,,, represents the number of competing operations
in the candidate set C' that also require machine m. The
competition score competition(o) is the average competition
intensity across the candidate machine set M; ;, reflecting the
expected contention level of operation o.

e) : Finally, the selection process employs e-greedy
replacement and type-wise quotas to ensure that a diverse
set of operations is selected as critical candidates.

2. Hybrid Execution Strategy:

o NSGA-II Optimization (for N, operations): Multi-
objective optimization determines optimal machine-
AGV assignments, considering all constraints and ob-
jectives. These assignments are hard commitments that
must be strictly enforced.

o Rule-based Dispatching (for remaining operations):
All other operations follow deterministic rules (SPT,
EDD, or FCFS) with minimal computational overhead.
These assignments are soft and can be revised in sub-
sequent epochs.

This hybrid approach ensures that critical decisions receive
thorough optimization while maintaining tractability. The
complexity reduces from O(N; X Nps X Na) to O(Npax X
Nt X Na)+O(Niemaining )» Where the second term has linear
complexity due to rule-based assignment.

B. RL-based Ny,.x Policy Learning

The RL agent learns to dynamically adjust Ny, ef-
fectively controlling the balance between optimization and
rule-based dispatching. The augmented state representation
includes:

st = { machine features, AGV features, global progress }.
(18)
o Machine Features: For each machine, we consider
(i) the total processing time of the input queue, (ii)
the remaining processing time of the job currently in
service, and (iii) the number of jobs waiting in the
output queue. Their minimum, mean, and maximum val-
ues are extracted and normalized to provide aggregate
descriptors of machine load.
e AGV Features: The numbers of AGVs in delivery,
fetch, and idle states are included, along with the
average fleet utilization rate.
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o Global Progress: The overall job completion ratio
and the average machine utilization are incorporated to
summarize system-level progress.

This yields a 15-dimensional feature vector that compactly
represents operation queues, resource utilization, and trans-
portation status as the input to the RL agent.
The action space consists of discrete choices: Npax €
{4,8,12,16, 24}, where:
o Small N,y (4-8): Mostly rule-based execution, suitable
for stable conditions
o Medium Np,.x (12-16): Balanced hybrid mode for nor-
mal operations
o Large Npyax (24): Optimization-heavy mode for critical
situations

The reward function is designed to learn the optimal trade-
off:

At each decision epoch ¢, the reward is defined as a penalty
over four terms: (i) due-date violation, (ii) degradation of the
makespan upper bound relative to a baseline rule, (iii)) AGV
travel distance, and (iv) the computation time required to run
NSGA-II on the selected Ny,.x Operations.

Ty = (19)

_ (Aviol Viol; + Ac - Gap,

+ Amove : Movet + >\time : tNSGA)7
where Ayiol, Ay Amove, Atime > 0 are tunable weights and
the terms are defined below:

o Viol;: the total due-date violation at epoch t, e.g.,

ZM max{0, Cgi —dji}.
o Gap,: the excess makespan upper bound compared to

a baseline rule solution 7°:

Gap, = max{ covB (t]ay) — CYB (t | 79, 0},

max max

where CUZ. denotes the simulator-estimated makespan
upper bound under partial commitments.

o Move;: AGV travel distance at epoch ¢, measured by

total travel distance or travel time.

tNSGA: the elapsed computation time to execute NSGA-

IT on the selected set of Nyax critical operations at

epoch t.

The key insight is that Viol; heavily penalizes poor deci-
sions on critical operations, teaching the agent to increase
Nnax When quality matters. Conversely, the normalized
computation time term {NSGA encourages smaller Ny,,x when
rules suffice. Through training, the agent learns to recognize
patterns indicating when optimization effort is worthwhile
versus when rules are adequate.

C. Incremental Execution with Hybrid Commitment

Following the online scheduling paradigm, we employ a
simulation-based optimization approach where Ny, critical
operations receive NSGA-II optimization. The system main-
tains a dispatching rule that is consistently applied to all
non-optimized operations throughout both fitness evaluation
and actual execution.

The key aspects of our simulation-based hybrid approach:

1. Default Rule Policy:
o The system maintains a pre-defined default dispatching
rule.
o This default rule is consistently applied throughout:
— During NSGA-II fitness evaluation (for non-
optimized operations)
— During actual execution (for operations not in C)
o The same default rule ensures consistency between
simulation and reality
2. Hybrid Execution Policy in Simulation:
o When the simulator processes an operation o:

if 0 € C (fixed by NSGA-II)
otherwise (default rule)
(20
o This hybrid policy ensures that optimized decisions are
strictly enforced while maintaining efficiency for routine
operations

*[o]

Assignment(o) = {D(o)

3. Critical Assumptions:

o Simulator capability: The discrete-event simulator can
distinguish between fixed mappings and default-rule
operations

« Rule consistency: The same default rule D is used in
both fitness evaluation and actual execution

o Deterministic evaluation: Given the same fixed map-
pings and default rule, the simulator produces consistent
results

4. Mapping Types:

o Fixed Mappings: NSGA-II optimized machine-AGV
assignments for Ny, operations are immutable and
override the default rule

o Default Rule Application: All other operations follow
the pre-defined default rule D

This default rule policy ensures predictable behavior for non-
critical operations while allowing optimization to focus on
high-impact decisions.

V. EXPERIMENTS

In this section, the performance of the proposed RL-
based hybrid online co-scheduling method is validated in a
digital twin simulation environment. Comparisons are made
against two baselines (rule-based scheduling and NSGA-II)
and the proposed RL-NSGA-II approach. Performance is
evaluated over 10 independent simulation trials, reporting the
minimum, mean, and maximum values of makespan, AGV
travel distance, due date violations, and optimization runtime.

A. Experimental Setup and Parameters

Experiments are carried out using a scenario generator that
constructs a shop floor with multiple jobs, machines, and
AGVs. Each job follows predefined precedence constraints,
and each AGYV is restricted to transporting at most one job at
a time. Rule-based scheduling employs the ECT policy for
machine—job matching and the FCFS policy for AGV—job
matching.
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TABLE I: Experimental scenario and NSGA-II parameters

Parameter Value
Scenario parameters
Number of jobs 40

Operations per job 3-5

Number of machines 8

Number of AGVs 5

Processing times Uniform[20, 40]

Transfer times Uniform(5, 10]

Release times 10-job batches in [0, 590]

Due times Release time + processing + [0, 200]
NSGA-II parameters

Population size 100

Generations 200

Crossover probability 0.7
Mutation probability 0.2

B. Comparison Methods

We compare three scheduling strategies:

1) Rules: rule-based scheduling only (ECT for machine—
job matching; FCFS for AGV—job matching)

2) NSGA-II: NSGA-II applied to all operations

3) RL + NSGA-II (Proposed): RL selects the candidate
set for NSGA-II optimization

C. Evaluation Metrics

Each scenario is executed 10 times under identical condi-
tions. We analyze:
o Makespan(F1): overall job completion time
e AGV Travel Distance(F2): total travel distance of
AGVs
o Due Date Violation(F3): total tardiness beyond due
dates
o Optimization Runtime(F4): computation time con-
sumed by NSGA-II generations
For each metric, we report the minimum, mean, and
maximum values to assess the balance between solution
quality and computational efficiency.

D. Results and Analysis

Table II and Figure 1 summarize the performance of the
three scheduling strategies—rule-based scheduling, NSGA-II
optimization, and the proposed RL+NSGA-II hybrid. Results
are reported as the minimum, mean, and maximum values
over ten independent simulation trials.

TABLE II: Performance comparison of scheduling methods
(min/mean/max over 10 runs).

Method F1 F2 F3 F4
879.50 1902.00 3147.10 0.00
Rules 1083.42 1994.00  10851.72 0.00
1360.05 2184.00  20536.10 0.00
685.10 1873.00 1901.90 71.31
NSGA-II 801.82 1956.60 5289.42 94.42
984.00 2019.00  10424.30 112.72
756.10 1899.00 2561.40 35.90
RL+NSGA-II 851.98 1969.40 5781.45 41.88
987.00 2187.00  11544.60 53.97

a) Makespan (F1).: The rule-based approach yields the
largest average makespan (1083.4), indicating inefficiency
in workload balancing. NSGA-II achieves the shortest av-
erage makespan (801.8), serving as the quality upper bound.
RL+NSGA-II achieves 851.9 on average, shorter than Rule
and close to NSGA-IL

b) AGV Travel Distance (F2).: All three methods pro-
duce similar results in the range of 1900-2000 on aver-
age, and no significant differences are observed. The mini-
mum-maximum ranges are also comparable across the three
methods.

c¢) Due Date Violations (F3).: The rule-based method
shows a large spread between minimum and maximum
values, reaching more than 20,000 violations in some sce-
narios, which indicates instability. NSGA-II produces a nar-
rower range and more consistent performance. RL+NSGA-II
achieves a comparable average to NSGA-II while signifi-
cantly reducing the violation scale compared to Rule.

d) Optimization Runtime (F4).: The rule-based method
does not apply to this metric and is excluded from the
results. NSGA-II requires an average of 94s (up to 1135s),
leading to substantial computational overhead. RL+NSGA-II
reduces this to 41.9 s on average, less than half of NSGA-II,
making it more suitable for satisfying online decision-making
constraints.

VI. DISCUSSION AND CONCLUSION

The experiments demonstrate that the proposed
RL+NSGA-II hybrid framework achieves a balanced trade-
off between rule-based scheduling and full optimization.

The rule-based approach ensures rapid computation but
exhibits high performance variance, particularly in makespan
and due date violations. This instability shows that heuris-
tics alone cannot reliably handle diverse shop-floor con-
ditions. Conversely, NSGA-II consistently delivers high-
quality schedules with minimal due date violations, serving
as a performance upper bound, yet its high computation time
renders it impractical for real-time decision-making.

By contrast, the RL+NSGA-II hybrid attains solution
quality close to NSGA-II while reducing computation time
by more than half. Through adaptive selection of a limited set
of critical operations, the RL agent minimizes unnecessary
optimization and maintains responsiveness within decision
deadlines. This result confirms the framework’s effectiveness
in resolving the inherent quality—efficiency trade-off of on-
line co-scheduling.

Overall, the framework complements the limitations of
single-strategy methods by combining responsiveness with
stable solution quality, making it promising for deployment
in real manufacturing environments. Some quality loss may
occur under extreme conditions, which highlights the need
for further validation in larger-scale or highly uncertain
environments. Future work will extend the approach to more
complex scenarios, explore hierarchical rule integration, and
conduct industrial testbed experiments.
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Fig. 1: Performance comparison of Rules, NSGA-II, and RL+NSGA-II across four metrics: (a) makespan, (b) AGV travel
distance, (c) due date violation, and (d) optimization runtime.
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