
Mobility-Aware Federated Offloading via Reinforcement Learning:
Reliable and Energy-Fair Edge Intelligence

Woojin Jun Doyoung Kim Moon Gi Seok
Dept. of Computer Science and AI Engineering, Dongguk University

Seoul, Republic of Korea
{woojin.jun, doyoung.kim, mgseok}@dgu.ac.kr

Abstract— Mobile agents in federated edge systems must
decide not only whether to offload tasks but also how much
computation to process locally before transmission. We propose
a mobility-aware and energy-fair offloading framework driven
by reinforcement learning (RL) with a feasibility filter. The
RL policy jointly selects the offloading server and the DNN
split point, while a feasibility filter excludes actions that are
kinematically unsafe—based on the cosine between motion
direction and the RSU bearing, the induced radial speed, and
the round deadline. Energy fairness is encouraged by penalizing
variance in residual battery levels across agents, sustaining
long-term participation. By accounting for mobility-induced
risks—frequent handovers and motion trends—our framework
avoids wasted offloading attempts and improves reliability. Un-
like binary or greedy heuristics, the proposed method supports
fine-grained partial execution and mitigates both mobility risks
and uneven energy depletion. Simulations with 150 mobile
agents and 24 RSUs show clear improvements in latency, drop
rate, and energy balance over Always-Local, Always-Offload,
and mobility-unaware baselines. These results highlight the
importance of mobility-aware and fairness-conscious offloading
for reliable federated learning at the edge.

I. Introduction

The proliferation of mobile agents such as autonomous
guided vehicles (AGVs), unmanned aerial vehicles (UAVs),
and connected vehicles in smart factories and intelligent
transportation systems has intensified the demand for timely
and energy-efficient computation at the edge. These agents
often participate in federated learning (FL), where in each
round they must decide whether to contribute updates and,
if so, whether to process tasks locally or offload them
to a nearby roadside unit (RSU). These decisions directly
affect convergence speed, latency reliability, and cross-device
energy balance, making efficient offloading a core challenge
for practical FL deployment.

Task offloading has been widely studied as a means to
overcome device limitations. Early work relied on static
heuristics, greedy latency minimization, or simple signal-
to-noise ratio (SNR) thresholds. These approaches remain
brittle under mobility, neglecting mobility-induced uncer-
tainty such as variable motion trends and frequent handovers,
resulting in high task drop rates, degraded tail latency, and
uneven energy depletion. Existing approaches either rely
on heuristic rules (e.g., SNR thresholds, greedy latency
minimization) or adopt unconstrained DRL policies. Both
can be brittle in mobile offloading: heuristics ignore coverage

dynamics and deadlines, whereas unconstrained DRL may
propose actions that cannot finish within short contact times.
We instead enforce feasibility up front with a feasibility filter
and then apply a standard actor–critic policy (RL-Filter) on
the reduced action set, yielding a practical controller under
mobility and deadline constraints.

In this paper, we focus on the local agent perspective
under dynamic mobility conditions and propose a mobility-
aware and energy-fair partial offloading policy based on
reinforcement learning (RL) with a feasibility filter. The RL
agent jointly selects the offloading server and partition point
of deep neural network (DNN) layers, enabling partial exe-
cution across device and edge. The feasibility filter excludes
infeasible offloading actions that are unlikely to complete
within the kinematic budget (derived from approach cosine,
radial speed, and the round deadline), thereby directly re-
ducing dropouts caused by mobility risks. To sustain long-
term FL participation, energy fairness is incorporated by
penalizing variance in residual battery levels across agents,
ensuring that no single device is disproportionately drained.
Unlike binary or greedy strategies, our framework explicitly
accounts for both mobility risks and fairness while adapting
to dynamic queueing and interference conditions.

The main contributions of this work are summarized as
follows:

• Problem formulation: We formulate offloading in FL
rounds as a mobility-aware partial execution problem,
where feasibility is assessed via a kinematic risk model
that considers the approach angle and radial speed
toward the serving RSU.

• Feasibility-constrained RL framework: We propose
an RL policy constrained by feasibility masks, which
prevents unrealistic actions while adapting to non-
stationary mobility and wireless conditions.

• Energy fairness: We introduce fairness defined as
variance reduction in normalized battery consumption,
balancing long-term energy usage across heterogeneous
agents.

• Performance validation: Simulations with 150 mobile
agents and 24 RSUs demonstrate significant improve-
ments in latency, drop rate, and energy balance com-
pared to Always-Local, Always-Offload, and mobility-
unaware baselines.

The 10th International Conference on Consumer Electronics (ICCE) Asia

- 470 -

The remainder of this paper is organized as follows.
Section II reviews related work. Section III defines the
system model, including latency, energy, mobility constraints,
and fairness formulations. Section IV presents the proposed
mobility-aware and energy-fair offloading framework with
RL and a feasibility filter. Section V reports the simulation
setup, baseline policies, and evaluation results. Finally, Sec-
tion VI concludes the paper and outlines directions for future
research.

II. Related Work
A. Federated Learning under Mobility

Early FL methods such as FedAvg [1] assumed static
clients, but mobile deployments introduce intermittent con-
nectivity and heterogeneous resources. A comprehensive
survey [2] highlights client availability and fairness as central
challenges. Nishio and Yonetani [3] studied client selection
under heterogeneous conditions in mobile edge FL. Build-
ing on these foundations, our work targets mobility-aware
offloading with explicit feasibility constraints and fairness
objectives.

B. Split and Partial Execution
Partitioning deep neural networks (DNNs) enables col-

laborative device–edge execution. Neurosurgeon [4] pio-
neered split inference between mobile and cloud, while
Edgent [5] extended this with adaptive right-sizing at the
edge. BranchyNet [6] demonstrated the use of early exits to
trade accuracy for latency. Recent efforts such as CoopFL [7]
extend DNN partitioning to federated learning and coop-
erative offloading across heterogeneous edge servers. Our
framework adapts these ideas to FL rounds and augments
them with a mobility-aware feasibility filter.

C. Fairness in Offloading and FL
Energy-aware offloading policies often reduce mean con-

sumption but can cause unbalanced drain across devices.
Fairness is typically measured by Jain’s index [8], and more
recent works emphasize variance reduction in residual bat-
tery levels to sustain participation. Our design incorporates
fairness directly into the RL reward, encouraging balanced
energy usage while maintaining latency reliability.

D. Surveys and Background
Surveys on mobile edge computing [9] and reinforcement

learning for wireless resource management [10] provide
broader background. These works motivate the need for
adaptive, RL-driven policies in wireless and edge systems.
Our study adds to this body of work by combining feasibility-
aware RL with fairness objectives under mobile federated
learning.

III. System Models
A. Network Architecture and FL Timeline

We consider a set of 𝑁 mobile agents N = {1, . . . , 𝑁}

participating in federated learning (FL) rounds with a set
of edge servers M = {1, . . . , 𝑀}. In each round 𝑟, agent 𝑖

decides (i) whether to participate, (ii) whether to execute
tasks fully locally or partially offload them, and (iii) if
offloading, which server 𝑚 ∈ M and split index 𝑘 to select.
All updates must arrive within the round deadline 𝑇bud to be
aggregated in the round. Candidate servers are determined
by the agent’s current position and proximity to RSUs.

B. Workload Model and Partition Granularity
Each workload is modeled as a DNN of 𝐾 layers with

computation cost 𝐶𝑖,ℓ and feature size 𝑆𝑖,ℓ . Selecting parti-
tion index 𝑘 executes layers 1:𝑘 locally and layers (𝑘+1):𝐾 at
server 𝑚, where 𝑘 = 0 denotes full offload (raw input upload)
and 𝑘 = 𝐾 denotes full local execution. The compute-based
partition ratio is

𝛼𝑖 (𝑘) =

∑𝑘
ℓ=1 𝐶𝑖,ℓ

∑𝐾
ℓ=1 𝐶𝑖,ℓ

, 0 ≤ 𝛼𝑖 ≤ 1,

where 𝑘 = 0 means full offload and 𝑘 = 𝐾 denotes full local
execution.

C. Latency Model
For agent 𝑖 with local CPU frequency 𝑓𝑖 and server 𝑚 with

service rate 𝐹𝑚:

𝑇 (𝑖)
loc (𝑘) =

𝑘∑

ℓ=1

𝐶𝑖,ℓ

𝑓𝑖
.

Transmission times are

𝑇 (𝑖,𝑚)
tx (𝑘) =

𝑈 (𝑖)
↑

(𝑘)

𝑅 (𝑖,𝑚)

↑

, 𝑇 (𝑖,𝑚)

dl (𝑘) =
𝑈 (𝑖)
↓

(𝑘)

𝑅 (𝑖,𝑚)

↓

,

where 𝑅 (𝑖,𝑚)

↑,↓
are uplink/downlink rates and 𝑈 (𝑖)

↑,↓
are payload

sizes.
Remote latency is

𝑇 (𝑖,𝑚)
rem (𝑘) = 𝑇 (𝑖,𝑚)

tx (𝑘) + 𝑇 (𝑖,𝑚)
que

+

𝐾∑

ℓ=𝑘+1

𝐶𝑖,ℓ

𝐹𝑚
+ 𝑇 (𝑖,𝑚)

dl (𝑘), (1)

with 𝑇 (𝑖,𝑚)
que the queueing delay.

Total completion time:

𝑇 (𝑖)
off (𝑘, 𝑚) = 𝑇 (𝑖)

loc (𝑘) + 𝑇 (𝑖,𝑚)
rem (𝑘).

D. Mobility Model and Feasibility Constraint
Let p𝑖 ∈ R

2 and p𝑚 ∈ R
2 be the positions of agent 𝑖 and

RSU 𝑚, respectively. Define the relative vector r(𝑖,𝑚) = p𝑖 −

p𝑚, distance 𝑑 (𝑖,𝑚) = ‖r(𝑖,𝑚) ‖, and the unit bearing from 𝑚
to 𝑖 as u(𝑖,𝑚) = r(𝑖,𝑚) /𝑑 (𝑖,𝑚) . Let v𝑖 be the agent velocity,
𝑣𝑖 = ‖v𝑖 ‖, and v̂𝑖 = v𝑖/𝑣𝑖 .

We quantify whether the agent is approaching the RSU
via the approach cosine

𝑐 (𝑖,𝑚) = 〈v̂𝑖 , −u(𝑖,𝑚) 〉 ∈ [−1, 1],

which is positive when moving toward the RSU. The induced
radial speed is

𝑣 (𝑖,𝑚)

rad = 𝑣𝑖 𝑐
(𝑖,𝑚) .

The 10th International Conference on Consumer Electronics (ICCE) Asia

- 471 -

We adopt a trend-based kinematic budget that scales the
round deadline 𝑇bud according to the motion direction:

𝜏 (𝑖,𝑚) = 𝑇bud ·
(
1 + 𝛼 [𝑐 (𝑖,𝑚)]+ − 𝛽 [−𝑐 (𝑖,𝑚)]+

)
,

where [𝑥]+ = max(𝑥, 0), and 𝛼, 𝛽 > 0 tune the gain for ap-
proaching vs. receding motions (default 𝛼=0.6, 𝛽=0.3). This
formulation captures whether the agent is moving toward the
RSU sufficiently fast to sustain offloading within the round
deadline, without requiring explicit coverage prediction.

A candidate (𝑘, 𝑚) is feasible if

𝑇 (𝑖)
off (𝑘, 𝑚) ≤ 𝜂 · min{𝜏 (𝑖,𝑚) , 𝑇bud}, (2)

where 𝜂 ∈ (0, 1) is a safety margin (default 𝜂 = 0.8). Pairs
that violate (2) are filtered out and excluded from the RL
agent’s action space.

To obtain realistic completion times, the simulator explic-
itly accounts for queueing delay, interference, and dynamic
uplink integration. The offloading latency is computed by
integrating the transmission rate over trajectory segments,
together with local and remote computation times, so that
execution time closely reflects mobility-induced channel vari-
ation.

E. Energy Model
Local energy consumption:

𝐸 (𝑖)
loc (𝑘) = 𝜅𝑖 𝑓

2
𝑖

𝑘∑

ℓ=1
𝐶𝑖,ℓ .

Communication energy:

𝐸 (𝑖,𝑚)
comm (𝑘) = 𝑃 (𝑖)

tx 𝑇 (𝑖,𝑚)
tx (𝑘) + 𝑃 (𝑖)

rx 𝑇 (𝑖,𝑚)

dl (𝑘).

Total energy:

𝐸 (𝑖)
total (𝑘, 𝑚) = 𝐸 (𝑖)

loc (𝑘) + 𝐸 (𝑖,𝑚)
comm (𝑘).

F. Fairness Metric
Let 𝐵𝑖 (𝑟) be agent 𝑖’s residual battery at round 𝑟. Normal-

ized battery level:

𝑏𝑖 (𝑟) =
𝐵𝑖 (𝑟)

𝐵max
𝑖

.

Fairness is measured as variance of normalized battery
levels:

V(𝑟) =
1
𝑁

𝑁∑

𝑗=1

(
𝑏 𝑗 (𝑟) − 𝑏̄(𝑟)

)2
, 𝑏̄(𝑟) =

1
𝑁

𝑁∑

𝑞=1
𝑏𝑞 (𝑟).

G. Decision Problem
At each round, agent 𝑖 selects (𝑚, 𝑘) from the feasible set

defined by (2). The RL agent receives reward

𝑅𝑖 = −
(
𝑤𝑇

𝑇
(𝑖)

off
𝑇bud

+ 𝑤𝐸
𝐸

(𝑖)
total

𝐸cap
+ 𝑤𝑉ΔV(𝑟)

)
− 𝜙 · 1{drop} , (3)

where 𝜙 is a large drop penalty, and the weights 𝑤𝑇 , 𝑤𝐸 , 𝑤𝑉

match the simulator’s fair_reward function.
Thus, the optimization problem is to minimize latency

and energy while sustaining fairness, subject to mobility
feasibility.

IV. Proposed Method
In this section, we present the proposed mobility-aware

and energy-fair offloading framework. Unlike prior designs
that rely on an analytical index, our approach employs
a reinforcement learning (RL) agent that directly selects
both the target server 𝑚 and the partition index 𝑘 of the
DNN layers. To ensure feasibility under mobility uncertainty,
a feasibility filter excludes server–partition pairs that are
unlikely to complete within the round deadline or the kine-
matic budget 𝜏 (𝑖,𝑚) . This combination prevents unrealistic
offloading attempts while allowing the RL agent to adapt to
dynamic queueing, interference, and mobility conditions.

A. Mobility-Aware Feasibility Filter
For agent 𝑖 considering server 𝑚 and partition index 𝑘 , the

estimated completion time is

𝑇 (𝑖,𝑚) (𝑘) = 𝑇 (𝑖)
loc (𝑘) + 𝑇 (𝑖,𝑚)

rem (𝑘), (4)

where:
• 𝑇 (𝑖)

loc (𝑘) is the local compute latency for layers 1:𝑘 ,
• 𝑇 (𝑖,𝑚)

rem (𝑘) is the remote compute latency for layers
(𝑘+1):𝐾 at server 𝑚,

• 𝑇 (𝑖,𝑚)
tx (𝑘) is the uplink transmission time of intermediate

features up to split 𝑘 ,
• 𝑇 (𝑖,𝑚)

que is the expected queueing delay at server 𝑚.
We replace dwell-time prediction with the kinematic bud-
get 𝜏 (𝑖,𝑚) defined in Section III. The feasibility condition
becomes

𝑇 (𝑖,𝑚) (𝑘) ≤ 𝜂 · min{𝜏 (𝑖,𝑚) , 𝑇bud}, (5)

When the agent is receding from an RSU (i.e., with nega-
tive approach cosine), we do not enforce a hard exclusion.
Instead, the feasibility budget is shrunk by the trend-based
gain factor, making such offloading attempts unlikely to pass
the feasibility check without being categorically ruled out.

If condition (5) is not satisfied, the pair (𝑘, 𝑚) is filtered
out and excluded from the RL action space.

B. Reinforcement Learning Formulation
Each agent makes an offloading decision at the beginning

of an FL round.
a) State.: The RL observation includes SINR esti-

mates, kinematic features 𝑐 (𝑖,𝑚) , 𝑣𝑖 , 𝑣
(𝑖,𝑚)

rad , 𝑑 (𝑖,𝑚) for candi-
date RSUs, local CPU frequency 𝑓𝑖 , residual battery 𝐵𝑖 (𝑟),
and queueing/drop EMAs.

b) Action.: The action space is

𝑎𝑖 = (𝑚, 𝑘), 𝑚 ∈ {0, . . . , 𝑀}, 𝑘 ∈ {0, . . . , 𝐾},

including a special token for local execution.
c) Reward.: The reward function follows the definition

in (3), combining latency, energy, and fairness terms with a
strong penalty 𝜙 for dropped updates.

d) Update.: The policy is trained with an actor–critic
algorithm (A2C). The feasibility filter ensures that only
feasible actions are passed to the policy, while the critic
evaluates long-term performance considering latency, energy,
fairness, and drop penalties.

The 10th International Conference on Consumer Electronics (ICCE) Asia

- 472 -

C. Connection to Federated Learning
In federated learning, dropped updates not only waste

local resources but also directly harm global convergence by
reducing the number of contributions per round. By explicitly
penalizing drops in (3) and constraining actions with (2),
our framework aligns per-agent offloading decisions with the
long-term goal of reliable and fair FL training.

D. Workflow
At the beginning of each FL round:
1) For each agent 𝑖, candidate pairs (𝑘, 𝑚) are evaluated

using (4).
2) Feasibility filter (2) excludes infeasible choices.
3) The RL policy samples an action 𝑎𝑖 = (𝑚, 𝑘) from the

feasible set.
4) Selected tasks are executed; latency, energy, and suc-

cess outcomes update the reward (3).
5) Successful updates are transmitted and aggregated by

the server.
This design ensures that mobility-awareness and fairness are
embedded into each decision while preserving adaptability
under non-stationary conditions.

V. Experimental Results
A. Simulation Setup

We evaluate the proposed framework via simulation with
mobile agents traveling along a road segment covered by
multiple RSUs (edge servers). Agents follow random trajec-
tories across overlapping RSU coverage regions. All updates
must be completed within the round deadline 𝑇bud to be
included in FL aggregation. Table I summarizes the main
simulation parameters.

In our simulation configuration, the result payload size is
set to zero (result_kb=0), hence downlink transmission
and reception energy are negligible. Accordingly, the perfor-
mance is dominated by uplink communication, and we omit
downlink terms in our experimental evaluation.

TABLE I: Simulation Parameters.

Parameter Value

Number of agents (𝑁) 150
Number of RSUs (𝑀) 24 (grid 6×4)
RSU coverage radius 300 m
DNN layers (𝐾) 20
Round deadline (𝑇bud) 3000 ms
Round period 5000 ms
Agent speed 4–7 km/h
Battery capacity 108,000 J

The spatial environment is illustrated in Fig. 1, which
compares rounds 20 and 60 and shows how mobility and
the SINR landscape evolve over time.

We adopt a two-phase evaluation pipeline. First, the A2C
policy is trained under multiple random seeds. Then, fixed
checkpoints are evaluated on held-out mobility traces with
eval_only=true to report latency, drop, energy, and fair-
ness metrics. The main text reports evaluation performance,
while training curves are deferred to the appendix.

B. Baseline Policies
We compare the following policies:
• Always-Local: All computation is executed locally on

the device.
• Always-Offload: All computation is fully offloaded to

the nearest RSU.
• Greedy-Latency: Selects the partition index 𝑘 that

minimizes estimated latency only.
• SNR-Only (Mobility-Unaware): Offloads if SNR is

above a fixed threshold, otherwise runs locally.
• Analytical Index: Uses a heuristic index (la-

tency/SNR/queue estimates) to decide partitioning,
without RL.

• RL-Filter (ours): An RL agent chooses server and par-
tition index, while a feasibility filter excludes infeasible
or unsafe options (e.g., moving away from the RSU or
insufficient 𝜏 (𝑖,𝑚)).

C. Evaluation Metrics
We report:
• p95 Latency: 95th percentile completion time (ms).
• Drop Rate: Ratio of failed tasks (e.g., due to leaving

RSU coverage or budget violation).
• Energy: Mean energy consumed per agent per round

(arbitrary units).
• Fairness: Variance of normalized battery levels (lower

is better).

D. Results
We report results over 300 rounds of simulation. Table II

and Figs. 2–3 summarize the comparison.
a) Latency and reliability.: RL-Filter achieves the low-

est tail latency among all policies. Compared to Always-
Local (4910.9 ms), RL-Filter reduces the p95 latency to
3186.9 ms, corresponding to a 35.1% reduction. It also
lowers the drop rate from 12.7% to 7.1%, demonstrating that
the feasibility mask effectively prevents offloads that would
otherwise fail during handovers.

b) Energy and fairness.: Energy consumption is re-
ported in raw (unnormalized) units. Always-Local consumes
the highest energy (51.08), while Always-Offload uses the
least (5.10) due to reduced local computation, despite high
failure rates. RL-Filter consumes 29.10 on average, which
is higher than Always-Offload but significantly lower than
Always-Local. Importantly, RL-Filter maintains fairness with
a variance of 0.0062, sustaining long-term participation.

c) Partition adaptivity.: Fig. 4 illustrates how RL-Filter
distributes its choices across partition indices 𝑘 , selecting
earlier splits when mobility or SINR budgets are tight and
deeper splits when conditions are favorable. This adaptive
behavior underlies its joint gains in latency, reliability, and
fairness.

E. Discussion
Two key insights emerge. First, mobility-awareness via

action filtering is critical for tail protection and reliability:

The 10th International Conference on Consumer Electronics (ICCE) Asia

- 473 -

(a) Round 20 (b) Round 60

Fig. 1: SINR heatmap with RSU and agent snapshots. Background shows sinr_db; red triangles denote RSUs (S*), and
circles denote agents (A*). Snapshots are taken at Round 20 and Round 60.

always local

always offlo
ad

greedy snr
index

rl-f
ilte

r
0

5000

10000

15000

20000

p
9
5
_
m

s

Policy comparison: p95_ms

always local

always offlo
ad

greedy snr
index

rl-f
ilte

r
0.0

0.2

0.4

0.6

d
ro

p
_
ra

te

Policy comparison: drop_rate

Fig. 2: Latency and reliability metrics across policies. RL-
Filter achieves the lowest tail latency and drop rate.

without a feasibility filter, offloaded tasks often fail dur-
ing handovers, inflating p95 latency and increasing drop
rates. By enforcing feasibility constraints, RL-Filter ensures
that only actions likely to succeed are explored, directly
reducing wasted transmissions. Second, the reward formu-
lation—combining latency, energy, and fairness with strong
penalties for dropped updates—encourages the RL agent to
balance load across time and agents. This results in lower
average energy consumption and reduced variance in battery

always local

always offlo
ad

greedy snr
index

rl-f
ilte

r
0

10

20

30

40

50

e
n

e
rg

y
_
m

e
a
n

Policy comparison: energy_mean

always local

always offlo
ad

greedy snr
index

rl-f
ilte

r
0.000

0.002

0.004

0.006

0.008

fa
ir

_
v
a
r

Policy comparison: fair_var

Fig. 3: Energy consumption and fairness across policies. RL-
Filter reduces energy while balancing battery usage.

levels, sustaining long-term participation without requiring
an analytical index or handcrafted hybrid logic.

It is also worth noting that fairness objectives may intro-
duce trade-offs with other metrics. For example, aggressively
equalizing battery usage could sometimes increase latency or
reduce short-term task throughput. Our results suggest that
RL-Filter strikes a good balance between fairness and per-
formance, but systematically exploring this trade-off remains
an important direction for future work.

The 10th International Conference on Consumer Electronics (ICCE) Asia

- 474 -

0 1 2 3 4 5 6 7 8 9 1011121314151617181920

k value

0

50

100

150

200

C
o
u

n
t

0.7%

1.9%
0.8%

0.2%0.5%
1.3%1.5%

3.9%

6.1%

4.5%

8.4%

6.2%

4.0%
2.8%

7.6%

4.9%4.7%
5.3%

9.4%9.2%

15.9%
Distribution of Selected k

Fig. 4: Distribution of selected partition indices 𝑘 under RL-
Filter, highlighting adaptive partitioning behavior.

TABLE II: Corrected performance (means over 300 rounds).
Energy is reported in raw units.

Policy p95 Latency (ms) Drop Rate Energy Mean Fairness Var

Always-Local 4910.9 12.7% 51.08 0.0086
Always-Offload 12236.4 52.3% 5.10 0.0048
Greedy-Latency 20879.5 69.7% 9.60 0.0048
SNR-Only 8481.8 22.4% 33.59 0.0075
Analytical Index 20066.2 67.6% 9.00 0.0048
RL-Filter (ours) 3186.9 7.1% 29.10 0.0062

Together, these effects demonstrate that mobility-aware
filtering and fairness-aware rewards are sufficient to achieve
robust and adaptive offloading.

VI. Conclusion
In this work, we studied mobility-aware and energy-fair

task offloading for federated learning with mobile agents.
Unlike generic edge offloading methods, our framework is
explicitly tailored for FL rounds, where dropped updates
directly harm global convergence. We proposed a reinforce-
ment learning (RL) based policy constrained by a feasibility
filter, which filters out infeasible server–partition choices
that would exceed the kinematic budget 𝜏 (𝑖,𝑚) or the round
deadline. Energy fairness is embedded by penalizing variance
in residual battery levels, preventing premature depletion of
specific agents. This design yields an adaptive and mobility-
aware offloading policy that improves reliability and sustain-
ability.

Through simulations with 150 mobile agents and 24
RSUs, we demonstrated that RL-Filter outperforms con-
ventional baselines in terms of tail latency, drop rate, and
fairness-aware energy usage. The results highlight that ex-
plicit mobility-awareness is essential for protecting against
handover-induced failures, while fairness-aware rewards sus-
tain long-term participation across heterogeneous devices.
Future Work. Future extensions include two main direc-
tions. First, refining feasibility estimation with trajectory-
aware contact-time models or map-aware predictors could
improve mobility robustness. Second, validating the frame-
work on real-world vehicular datasets and hardware testbeds
will be critical to demonstrate practicality beyond simulation.

ACKNOWLEDGMENT
This research was supported by the “Regional Innovation

System Education (RISE)” program through the Seoul RISE
Center, funded by the Ministry of Education (MOE) and
the Seoul Metropolitan Government (2025-RISE-01-007-
05), and by the Institute of Information Communications
Technology Planning Evaluation (IITP) grant funded by the
Ministry of Science and ICT (MSIT), Republic of Korea,
under the Artificial Intelligence Convergence Innovation Hu-
man Resources Development program (IITP-2025-RS-2023-
00254592) and the IITP-ICAN (ICT Challenge and Advanced
Network of HRD) program (IITP-2025-RS-2023-00260248).

References
[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and

B. A. y. Arcas, “Communication-efficient learning of deep
networks from decentralized data,” in Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics
(AISTATS), ser. Proceedings of Machine Learning Research,
vol. 54. PMLR, 2017, pp. 1273–1282. [Online]. Available:
https://proceedings.mlr.press/v54/mcmahan17a.html

[2] P. Kairouz, H. B. McMahan, B. Avent, and et al., “Advances and open
problems in federated learning,” Foundations and Trends in Machine
Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[3] T. Nishio and R. Yonetani, “Client selection for federated learning
with heterogeneous resources in mobile edge,” in Proceedings of IEEE
International Conference on Communications (ICC). IEEE, 2019, pp.
1–7.

[4] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” in Proceedings of the 22nd International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). ACM, 2017, pp. 615–629.

[5] E. Li, Z. Zhou, and X. Chen, “Edge intelligence: On-demand deep
learning model co-inference with device-edge synergy,” in Proceedings
of the ACM SIGCOMM 2018 Workshop on Mobile Edge Communica-
tions (MECOMM’18). Budapest, Hungary: ACM, 2018, pp. 31–36.

[6] S. Teerapittayanon, B. McDanel, and H. Kung, “Branchynet: Fast
inference via early exiting from deep neural networks,” in 2016 23rd
International Conference on Pattern Recognition (ICPR). IEEE, 2016,
pp. 2464–2469.

[7] T. Liu, Z. Zhang, R. He, F. Liu, and C. Xu, “Coopfl: Accelerating fed-
erated learning with dnn partitioning and offloading in heterogeneous
edge computing,” Computer Networks, vol. 228, p. 109510, 2023.

[8] R. Jain, D.-M. W. Chiu, and W. R. Hawe, “A quantitative
measure of fairness and discrimination for resource allocation
in shared computer systems,” Digital Equipment Corporation,
Hudson, MA, Tech. Rep. DEC-TR-301, 1984. [Online]. Available:
https://www.cse.wustl.edu/ jain/papers/fairness.htm

[9] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[10] N. C. Luong, D. T. Hoang, D. T. Gong, D. Niyato, P. Wang, and Y.-C.
Liang, “Applications of deep reinforcement learning in communica-
tions and networking: A survey,” IEEE Communications Surveys &
Tutorials, vol. 21, no. 4, pp. 3133–3174, 2019.

The 10th International Conference on Consumer Electronics (ICCE) Asia

- 475 -

	ICCE-Asia 2025
	Papers

	Oral Sessions

	OS06

	OS06-5-1571202553

