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Abstract

The proposed system performs distributed
fall detection using multiple RGB-D
cameras operating on edge devices.
Each camera independently tracks people
within its own view and collaborates only
when a person enters an overlapping area
shared with other cameras. When overlap
occurs, the camera sends lightweight
metadata about the detected person to a
coordinating Auctioneer, which determines
which device should handle that person
based on spatial and visual information. This

architecture minimizes redundant
computation and bandwidth usage, while
maintaining  real-time  coordination,

scalability by keeping all image data
processed locally on each device.

Keywords: Fall detection, Multi-camera
systems, Temporal signatures, Edge
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1 Introduction

Multi-camera fall detection must maintain real-time
response under occlusion and coverage gaps.
Centralized fusion scales poorly, creating bandwidth
and latency bottlenecks, while global re-identification
(re-ID) is fragile to illumination and viewpoint
changes and requires heavy cross-camera features.
Recent distributed trackers such as DMMA [1], which
performs decentralized multi-target association across
cameras, and Uni-ID [2], which assigns globally
consistent IDs for cross-camera re-identification,
move computation to the edge but still rely on
appearance cues or continuous consensus. Motion-
centric methods like MAT [3], which associates targets
via trajectory predictions, and UCMCTrack [4], which
compensates for camera motion to maintain
consistency, reduce appearance dependence yet incur

high per-node cost or implicit -centralization.
Field of view (FoV) overlap is often estimated online
through trajectory or homography cues [5], [6], which
are sensitive to lighting and require continuous
monitoring.

Privacy-aware systems restrict transmission to
metadata [7], [8], but either operate independently—
wasting computation—or keep always-on negotiation.
In real facilities, lighting variation, moving objects,
and varying scales frequently disrupt re-ID chains,
while edge devices face strict power limits and cannot
afford redundant detection. Existing paradigms solve
parts of the problem but not the whole: centralized
fusion causes bottlenecks, appearance-based methods
degrade with viewpoint shifts, and motion-only
schemes require dense communication.

We take a different route. The system precomputes
3D frustum intersections and activates collaboration
only when a person enters an overlapping region.
Each camera performs local tracking in a 2D-first
manner, using image-plane motion and confidence
cues for stable association.

Within each overlap group, devices communicate
through an Auctioneer, which coordinates identity
matching and task assignment. Instead of sharing
images or deep features, each node sends only
lightweight metadata—such as center of mass (CoM),
its velocity, and quality of view (QoV) score—
minimizing bandwidth and preserving privacy while
maintaining global consistency.

Contributions. (1) Temporal Signatures for robust
local identity without global re-ID; (2) a visibility-
adaptive matching scheme coupling 3D gating and
normalized 2D fallback in a logistic—-Hungarian
objective with soft/sticky terms; (3) an overlap-
triggered, single-device execution policy via
lightweight bidding that preserves accuracy while
eliminating redundant computation.

Organization. The remainder of the paper is
organized as follows: Sec. II details the proposed



method, Sec. III presents experiments and ablations,
and Sec. IV concludes the paper.
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Figure 1. Overall architecture of the proposed
Auctioneer—Bidder system for multi-camera fall
detection.

2 Method
A. System Architecture

Overview. As illustrated in Fig. 1, each RGB-D
node independently tracks humans within its FoV and
estimates its own camera pose using ORB-SLAM3[10]
in real time.

This allows every node to maintain a consistent
local map and spatial alignment with other devices in
the overlapping regions.

The estimated camera poses are used to transform
keypoint trajectories into a shared world coordinate
frame, enabling cross-view association under
geometry consistency.

Upon detecting overlap, the node transmits
lightweight metadata to the corresponding Auctioneer,
which batches incoming messages by timestamp and
performs two-stage processing: identity matching
using cosine similarity and QoV—-weighted assignment
via the Hungarian algorithm [12]. This ensures one-
node-per-person  coordination ~ with  minimal
bandwidth and full on-device privacy.

Definition of Temporal Signature. We define the
Temporal Signature (TS) as a compact, time-evolving
descriptor that characterizes a person’s identity and
motion across discrete timesteps:

TS, = [re, vy, c[){A]_

each TS is updated at every fixed timestep At. The
term 7, denotes the center of mass (CoM) of the
person in the world coordinate system, while its
projected image center ¢, (in pixels) is computed via
the pinhole projection: ¢, = g, (7¢), where mg_,
is defined by the camera intrinsics K, and extrinsics T,.
All image points are assumed undistorted after lens
calibration. The projection Jacobian J, = dmg 1, (r,)/
dr, quantifies the local mapping between 3D position
perturbations and their 2D image displacements. The

velocity term v, is computed as the finite difference of
consecutive CoM estimates: v, = %. Finally,
the depth-derived body-ratio anchor ®!4 is obtained as
a temporal average of normalized body-ratio
descriptors over 3-5 recent timesteps, providing a
long-term, view-invariant reference for person identity.

B. Local Tracking and Association (2D Projection
Only)

a) Detector, pixel measurement, and 3D lifting: We
use YOLOv8n-pose [9] (TensorRT-FP16) to obtain KP
keypoints {(u;, v;,conf)}XF, . where (u;, v;) denote the
2D pixel coordinates of each joint and conf; indicates
its detection confidence.We follow the COCO
keypoint convention (KP = 17). From these keypoints,
we derive two complementary measurements: (A) a
2D pixel observation for tracking, and (B) a 3D body-
ratio anchor for [A.

2D pixel measurement: the image-center c; € R?
is a confidence-trimmed average of torso-related
keypoints with mask [conf; > 0.3]; if fewer than
three are valid, fall back to the detector box center.
Pixel noise is

Rp = nglb
02, = EWM(o?(conf))),
o(conf) = a + b (1 — conf).

where EWM denotes an exponentially weighted
median over recent frames to stabilize per-frame noise
estimates. Defaults are a = 0.5px and b = 3.0 px
(refittable per site).

3D lifting for IA (only): with aligned depth d;, the
corresponding 3D  camera-frame position is
reconstructed as

. U;
ﬁgla)m =d; Kc_1 [vi]-
1

From valid joints J, compute height h and scale-
invariant 3D ratios to form ®'A; standardized per
device using Welford’s online algorithm [11] for mean
and variance estimation, which allows stable,
incremental normalization of depth-derived features
without storing past samples.

b) Kalman State and prediction (CV with standard
process noise): The temporal components of the
signature, Iy and v; are modeled as a Kalman state
x. = [, vf]". At each timestep At, the state is
propagated using a constant-velocity (CV) motion
model:

Xeje-1 = FXeqpe-15



Pt|t—1 = FPt—1|t—1FT +Q.

The state transition and process noise matrices are
given by:

At4I At3I
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The parameter o, = 0.5 m/s? denotes the standard de-
viation of process acceleration noise.

¢) 2D measurement model and innovation: Let
Fj¢—1 be the predicted CoM at time t. Its projection
onto the image plane is obtained via the pinhole model:
Cje-1 = nKC,TC(fm_l) . The Jacobian of this
projection, evaluated at the predicted CoM:

Hrz = ]nlfm_l'

maps infinitesimal 3D perturbations to the 2D image
plane. The innovation covariance for the 2D pixel

measurement is then given by S,p, = H; Pt(l?_l HT +
R, . Finally, the Mahalanobis innovation distance
between the measured and predicted 2D centers is

computed as:

Zm = \[(Cd - ét|t—1)Tsz_L}(Cd - ét|t—1)'

d) Long-term 3D anchor residual and 2D-only con-
sistency: To combine short-term 2D consistency(r, v;)
with long-term 3D appearance(®i4) stability, we de-
fine a composite residual between the detection anchor
;% and the track’s running anchor ®.

The 3D anchor residual is measured as the cosine
dissimilarity z; = 1 — cos(®}%, ®%) € [0,1] . The
overall 2D-3D consistency score is then formed as a
visibility-weighted  blend z. ., = a(v) z, + (1 —
a(v)) z;, where z,, is the Mahalanobis distance of
the 2D pixel residual, and the weight a(v) increases
with visibility v: a(v) = @pin + (@max — Xmin) U »
defaults o, = 0.35, appax = 0.85, k = 1.5.

Missing-14 guard: if fewer than three anchor joints
in J are valid, hold ®* and down-weight z, via
a'(v) = min(1, a(v) + Apglg)  (default
0.15).

Apolg =

e) Gate (self-calibrating quantile): For robust
association across varying visibility levels, we employ
an adaptive gating threshold derived from the
empirical distribution of consistency scores. Visibility
v is discretized into three bands:

b € {[0,0.3),[0.3,0.7), [0.7,1]}.

For each band, a target false-reject rate apgg(b)
defines the quantile threshold:

6gate (U) = Quantile 1—aprr(b) (Zcons):

The quantiles are estimated online with t-digest or
P2 over 30-60s window. During Cold-start, until at
least M;, = 200 samples are collected per band, a
pooled 95th percentile is. Used as a fallback threshold.
A detection-track pair is accepted if Ziopg < Ggare(V),
and otherwise rejected or deferred to probabilistic
matching.

/) Kalman update (2D-only, Joseph form): The pre-
dicted state x;;_, is corrected using the 2D pixel
measurement cd. The Kalman gain is obtained as
K, = Pt|t_1H,'TrSZ' . The corrected state and covariance
are updated as:

Xee = Xepe-1 T Ke(€q — €4e—1),
Pt|t ={- KtHT[)Pt|t—1(I - KtHn:)T + KtRng-
The covariance is updated in Joseph form.

g) From consistency to calibrated assignment cost:
The combined features, f = [ z,,, z;, v, V, age] are
mapped to a match probability P(match) =
o(wTy(f)), where () denotes feature normaliza-
tion and interaction expansion. The corresponding
cost is defined as C = —InP(match) and all gated
detection—track pairs are arranged into a global nega-
tive log-likelihood (NLL) cost matrix. The final data
association is obtained by minimizing this matrix via
the Hungarian algorithm, with default penalties are
Cpew = —In0.1 for new track creation and C,;;, =
—In0.3 for missed detections.

h) Spawning and state transitions: Duplicate births
are avoided by deferring any unmatched detection
within 0.35 m of an existing tentative track.

Each track follows a lightweight finite-state ma-
chine: Tentative — Confirmed after K=3 consecutive
matches (=0.10 s @ 30 fps); Confirmed — Deleted af-
ter M=10 consecutive misses (=0.33 s); and Un-
matched — Tentative if no nearby confirmed track ex-
ists. These rules ensure temporal stability while allow-
ing rapid adaptation to new entries.

C. Coordination in Overlap Groups

When to coordinate. Each FoV F; = {y:4;x <
b;} defines a 3D frustum in world space. For each
camera i, the set of overlapping regions with other
cameras is

All Overlap O, are precomputed and cached.
Coordination is activated only when a person’s lifted



footprint enters any of the cached overlap regions
(with entry/exit hysteresis).

a) Global matching uses using metadata: Each
node device maintains its own tracking records and
exports lightweight metadata (=0.2 kB per person)
whenever a person enters an overlap region. These
compact messages are transmitted to the Auctioneer,
which computes cosine-similarity costs between CoM
and its velocity vectors and resolves associations via
the Hungarian algorithm, ensuring consistent cross-
view identity alignment with negligible bandwidth
cost.

b) QoV-Based Bidding: For camera i and person p
at time t, with keypoint confidence confj(p) (t) and
validity mask mj(p)(t) €0,1, each keypoint is
weighted by its anatomical importance w;, defined as:

1.3, {for head and eyes } (j = 0,1,2)

1.7, {for shoulders and hips } (j = 5,6,11,12)
1.0, {otherwise.}

K wj conf® () mP (1)

(»)
KC(t) = X
L ( ) Z5(=Pl w;j m;p)(t)
KP ®
@) () = Z=im O
KS*(t) = ——
HOEES: v

KC i(p) (t) denotes the weighted mean confidence over
valid keypoints, KS i(p) (t) represents the weighted
visible-keypoint ratio.

Then, the overall QoV score is defined using the
geometric mean:

Qov, P (1) = \/ch”)(t) KsP(b).

Finally, the winning device is selected as:

i* = argmax; ¢ GQoVi(p) ®).

The overall score Qon-(p) represents a geometric
mean of both confidence and providing a conservative
yet stable estimate of view reliability. The runner-up
camera is retained as a secondary bidder for temporal
failover.

4 Experiments

Setup. 2x Intel RealSense D435i (30 fps), 2x Jetson
Orin NX, Gigabit switch, elderly-care mockup (10
mx8 m). Camera intrinsics provided by the
manufacturer and loaded from config (no re-
calibration). NTP sync (<10 ms).

a) Local tracking:

Metrics. For each ground-truth person visible in a
frame, tracking outcomes are classified as:

True Positive (TP): same track ID follows the same
person as in the previous frame.

MISS: the track is lost or temporarily disconnected.
SWAP: two persons cross and exchange track IDs.

Formally, we compare mappings between gt _id and
track id from frame t-1 to t. Tracking accuracy is
defined as

TP

A = ——
ceuracy Number of GT

In addition, we
continuity metrics:

report two complementary

ACRL (Average Correct Run Length): mean uninter-
rupted TP-segment length normalized by each per-
son’s visible duration—higher values indicate more
stable tracking.

FRAG (Fragments per frame): number of TP—MISS
or TP->SWAP transitions per frame—Ilower values in-
dicate fewer interruptions.

These metrics emphasize temporal consistency—how
long each person remains correctly tracked—rather
than frame-level precision, which is crucial for fall de-
tection tasks.

Dataset and Evaluation. Five short single-camera
RGB-D videos (MVI-MV5) were recorded to
evaluate tracking consistency under various motion
and interaction conditions. MV1-MV3 contain single-
person actions (entry, posture change), and MV4—
MV5 include multi-person scenes with partial
occlusion and crossings. Each sequence spans 53—89
frames, totaling 625 annotated person instances.
Tracking performance was evaluated using Accuracy,
ACRL, and FRAG, along with counts of SWAP and
MISS events as continuity indicators.

Table 1. Single-camera tracking performance on five motion
videos (MVI-MV5)

Dataset Accuracy SWAP MISS ACRL FRAG
MV1 0.981 0 1 0.9811 0.000
MV2 0.986 0 1 0.9857 0.000
MV3 0.989 0 1 0.9889 0.000
MV4 0.910 6 3 0.3036 0.040
MV5 0.962 2 3 0.2790 0.0017
Mean 0.966 2 2 0.7077 0.014




Results. the proposed temporal-signature tracker
maintains consistent person IDs even during crossings
or occlusion, preserving continuous trajectories under
challenging motion. Table 1 summarizes the
quantitative results: the tracker achieves over 0.98
Accuracy and zero fragmentation in single-person
videos (MV1-MV3), and a mean Accuracy of 0.966
across all sequences. Performance slightly decreases in
multi-person videos (MV4-MVS5) due to crossing-
induced swaps (reduced ACRL, small nonzero FRAG).
Overall, the results confirm strong temporal stability,
providing a reliable basis for downstream fall
detection relying on uninterrupted motion cues.

b) Identity Matching:

In the overlapping region between two cameras, 750
synchronized frames were collected, yielding 54 valid
bidding instances (i.c., persons simultancously
visible in both views). Each camera transmitted
compact metadata to the coordinator, which computed
cosine similarity between pairs and applied the
Hungarian  algorithm  for  final = matching.
As summarized in Table 2, the proposed bidding-based
matching achieved 75.9 % accuracy, 93.1 %
precision, 71.1 % recall, and an F1 score of 0.81.
These results confirm that the proposed logic ensures
reliable identity alignment across overlapping cameras,
maintaining high precision under partial occlusion and
cross-view motion.

Table 2. Multi-Camera Identity Matching in Overlapping Region

Confusion Matrix Predicted Same Predicted
Different

Actual Same 27 11

Actual Different 2 14

These results demonstrate that the proposed bidding
logic ensures reliable identity matching across
overlapping cameras, maintaining high precision even
under partial occlusion and cross-view motion.

¢) Fall Detection Accuracy by QoV:

To evaluate how QoV affects fall-detection
performance, we employed the Spatial-Temporal
Graph Convolutional Network (ST-GCN) [13], trained
on the FUKinect-Fall dataset [14]. The dataset
provides absolute 3D joint coordinates of humans
performing both fall and non-fall activities, allowing
robust joint-based learning. To further analyze model
behavior under different QoV, we recorded additional
fall sequences with a single camera while varying the
subject’s falling direction and posture.
Using camera localization results, 3D keypoints were
converted into a common world coordinate frame, and
20 consecutive frames (=1.2 s) from each sequence
were used as input. As shown in Fig. 2, the fall-
detection accuracy exhibits a strong dependence on the

QoV. When the QoV score is below 0.4, the mean
accuracy remains low at around 0.42, indicating
unreliable classification due to poor keypoint visibility.
As QoV increases beyond 0.5, the accuracy sharply
improves and stabilizes above 0.85 for QoV > 0.6,
demonstrating a clear positive correlation between
QoV and detection reliability
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Figure 2. Mean fall-detection accuracy of the ST-GCN model
across different QoV ranges. Each point indicates the averaged
accuracy within a given QoV interval, while the bars represent the
number of samples included in each bin.

5 Conclusion

We presented a distributed multi-camera fall-
detection system combining temporal-consistency
tracking, overlap-aware bidding, and QoV analysis.
The tracker achieved 0.966 accuracy with stable
continuity (high ACRL, near-zero FRAG), confirming
its ability to maintain consistent identity tracking
under occlusion and cross-view motion. The proposed
bidding-based  mechanism reliably  associated
identities across overlapping cameras, achieving an F1
score of 0.81 with high precision.

QoV analysis confirmed a positive correlation
between observability and detection reliability.
Overall, the system offers a scalable basis for reliable
fall detection in distributed edge-camera systems.
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