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Abstract 

The proposed system performs distributed 

fall detection using multiple RGB-D 

cameras operating on edge devices. 

Each camera independently tracks people 

within its own view and collaborates only 

when a person enters an overlapping area 

shared with other cameras. When overlap 

occurs, the camera sends lightweight 

metadata about the detected person to a 

coordinating Auctioneer, which determines 

which device should handle that person 

based on spatial and visual information. This 

architecture minimizes redundant 

computation and bandwidth usage, while 

maintaining real-time coordination, 

scalability by keeping all image data 

processed locally on each device. 

Keywords: Fall detection, Multi-camera 

systems, Temporal signatures, Edge 

computing 

 

1     Introduction 

Multi-camera fall detection must maintain real-time 

response under occlusion and coverage gaps. 

Centralized fusion scales poorly, creating bandwidth 

and latency bottlenecks, while global re-identification 

(re-ID) is fragile to illumination and viewpoint 

changes and requires heavy cross-camera features. 

Recent distributed trackers such as DMMA [1], which 

performs decentralized multi-target association across 

cameras, and Uni-ID [2], which assigns globally 

consistent IDs for cross-camera re-identification, 

move computation to the edge but still rely on 

appearance cues or continuous consensus. Motion-

centric methods like MAT [3], which associates targets 

via trajectory predictions, and UCMCTrack [4], which 

compensates for camera motion to maintain 

consistency, reduce appearance dependence yet incur 

high per-node cost or implicit centralization. 

Field of view (FoV) overlap is often estimated online 

through trajectory or homography cues [5], [6], which 

are sensitive to lighting and require continuous 

monitoring.  

Privacy-aware systems restrict transmission to 

metadata [7], [8], but either operate independently—

wasting computation—or keep always-on negotiation. 

In real facilities, lighting variation, moving objects, 

and varying scales frequently disrupt re-ID chains, 

while edge devices face strict power limits and cannot 

afford redundant detection. Existing paradigms solve 

parts of the problem but not the whole: centralized 

fusion causes bottlenecks, appearance-based methods 

degrade with viewpoint shifts, and motion-only 

schemes require dense communication. 

We take a different route. The system precomputes 

3D frustum intersections and activates collaboration 

only when a person enters an overlapping region. 

Each camera performs local tracking in a 2D-first 

manner, using image-plane motion and confidence 

cues for stable association. 

Within each overlap group, devices communicate 

through an Auctioneer, which coordinates identity 

matching and task assignment. Instead of sharing 

images or deep features, each node sends only 

lightweight metadata—such as center of mass (CoM), 

its velocity, and quality of view (QoV) score—

minimizing bandwidth and preserving privacy while 

maintaining global consistency. 

Contributions. (1) Temporal Signatures for robust 

local identity without global re-ID; (2) a visibility-

adaptive matching scheme coupling 3D gating and 

normalized 2D fallback in a logistic–Hungarian 

objective with soft/sticky terms; (3) an overlap-

triggered, single-device execution policy via 

lightweight bidding that preserves accuracy while 

eliminating redundant computation. 

Organization. The remainder of the paper is 

organized as follows: Sec. II details the proposed 



method, Sec. III presents experiments and ablations, 

and Sec. IV concludes the paper. 

 

Figure 1.  Overall architecture of the proposed 

Auctioneer–Bidder system for multi-camera fall 

detection.  

2     Method 

A. System Architecture 

Overview. As illustrated in Fig. 1, each RGB-D 

node independently tracks humans within its FoV and 

estimates its own camera pose using ORB-SLAM3[10] 

in real time.   

This allows every node to maintain a consistent 

local map and spatial alignment with other devices in 

the overlapping regions.  

The estimated camera poses are used to transform 

keypoint trajectories into a shared world coordinate 

frame, enabling cross-view association under 

geometry consistency. 

Upon detecting overlap, the node transmits 

lightweight metadata to the corresponding Auctioneer, 

which batches incoming messages by timestamp and 

performs two-stage processing: identity matching 

using cosine similarity and QoV–weighted assignment 

via the Hungarian algorithm [12]. This ensures one-

node-per-person coordination with minimal 

bandwidth and full on-device privacy.  

Definition of Temporal Signature. We define the 

Temporal Signature (TS) as a compact, time-evolving 

descriptor that characterizes a person’s identity and 

motion across discrete timesteps: 

𝑇𝑆𝑡 = [𝒓𝒕, 𝒗𝒕, Φ𝑡
𝐼𝐴]. 

each TS is updated at every fixed timestep Δ𝑡 . The 

term 𝒓𝒕  denotes the center of mass (CoM) of the 

person in the world coordinate system, while its 

projected image center 𝒄𝒕 (in pixels) is computed via 

the pinhole projection: 𝒄𝒕 = 𝜋𝐊𝐜 ,𝐓𝐜
(𝒓𝒕), where 𝜋𝐊𝐜 ,𝐓𝐜

 

is defined by the camera intrinsics 𝐊𝐜 and extrinsics 𝐓𝐜. 

All image points are assumed undistorted after lens 

calibration. The projection Jacobian 𝐉𝜋 = 𝜕𝜋𝐊𝐜,𝐓𝐜
(𝐫𝒕)/

𝜕𝐫𝒕 quantifies the local mapping between 3D position 

perturbations and their 2D image displacements. The 

velocity term 𝒗𝒕 is computed as the finite difference of 

consecutive CoM estimates: 𝒗𝒕 =  
𝒓𝒕  −  𝒓𝒕−𝟏

Δ𝑡
. Finally, 

the depth-derived body-ratio anchor Φ𝑡
𝐼𝐴 is obtained as 

a temporal average of normalized body-ratio 

descriptors over 3–5 recent timesteps, providing a 

long-term, view-invariant reference for person identity. 

 

B. Local Tracking and Association (2D Projection 

Only) 

a)  Detector, pixel measurement, and 3D lifting: We 

use YOLOv8n-pose [9] (TensorRT-FP16) to obtain KP 

keypoints {(𝑢𝑖, 𝑣𝑖 ,confi)}𝑖=1
𝐾𝑃 . where (𝑢𝑖 , 𝑣𝑖) denote the 

2D pixel coordinates of each joint and confi indicates 

its detection confidence.We follow the COCO 

keypoint convention (KP = 17). From these keypoints, 

we derive two complementary measurements: (A) a 

2D pixel observation for tracking, and (B) a 3D body-

ratio anchor for IA.  

2D pixel measurement: the image-center 𝑐𝑑 ∈ ℝ2 

is a confidence-trimmed average of torso-related 

keypoints with mask [ confi > 0.3 ] ; if fewer than 

three are valid, fall back to the detector box center. 

Pixel noise is 

𝑅p = σpx
2 𝐼2, 

σpx
2 = EWM(σ2(confi)), 

σ(conf) = 𝑎 + 𝑏 (1 − conf). 

where EWM denotes an exponentially weighted 

median over recent frames to stabilize per-frame noise 

estimates. Defaults are 𝑎 = 0.5 px  and 𝑏 = 3.0 px 

(refittable per site).   

3D lifting for IA (only): with aligned depth di, the 

corresponding 3D camera-frame position is 

reconstructed as 

𝐩cam
(𝑖)

= 𝑑𝑖  𝐊𝐜
−1 [

𝑢𝑖

𝑣𝑖

1
]. 

From valid joints 𝒥 , compute height ℎ  and scale-

invariant 3D ratios to form ΦIA ; standardized per 

device using Welford’s online algorithm [11] for mean 

and variance estimation, which allows stable, 

incremental normalization of depth-derived features 

without storing past samples. 

b) Kalman State and prediction (CV with standard 

process noise): The temporal components of the 

signature, 𝐫𝐭  and 𝐯𝐭  are modeled as a Kalman state 

𝑥𝑡 = [𝑟𝑡
⊤, 𝑣𝑡

⊤]⊤ . At each timestep Δ𝑡 , the state is 

propagated using a constant-velocity (CV) motion 

model: 

𝐱𝑡|𝑡−1 = 𝐅 𝐱𝑡−1|𝑡−1, 



𝐏𝑡|𝑡−1 = 𝐅 𝐏𝑡−1|𝑡−1𝐅⊤ + 𝐐. 

The state transition and process noise matrices are 

given by: 

𝐅 = [
𝐈 Δ𝑡 𝐈
𝟎 𝐈

] ,   𝐐 = 𝜎𝑎
2 [

Δ𝑡4

4
𝐈

Δ𝑡3

2
𝐈

Δ𝑡3

2
𝐈 Δ𝑡2𝐈

], 

The parameter 𝜎𝑎 = 0.5 m/s2 denotes the standard de-

viation of process acceleration noise.  

c) 2D measurement model and innovation: Let 

𝐫̂𝑡|𝑡−1  be the predicted CoM at time 𝑡. Its projection 

onto the image plane is obtained via the pinhole model: 

𝐜̂𝑡|𝑡−1 = 𝜋𝐊𝑐,𝐓𝑐
(𝐫̂𝑡|𝑡−1) . The Jacobian of this 

projection, evaluated at the predicted CoM: 

𝐇𝜋 ≡ 𝐉𝜋|𝐫̂𝑡|𝑡−1
. 

maps infinitesimal 3D perturbations to the 2D image 

plane. The innovation covariance for the 2D pixel 

measurement is then given by 𝐒2𝐷 = 𝐇𝜋  𝐏𝑡|𝑡−1
(𝑟)

 𝐇𝜋
⊤ +

𝐑p . Finally, the Mahalanobis innovation distance 

between the measured and predicted 2D centers is 

computed as: 

𝑧𝑚 = √(𝐜𝑑 − 𝐜̂𝑡|𝑡−1)⊤𝐒2𝐷
−1(𝐜𝑑 − 𝐜̂𝑡|𝑡−1). 

d) Long-term 3D anchor residual and 2D-only con-

sistency: To combine short-term 2D consistency(𝒓𝒕, 𝒗𝒕) 

with long-term 3D appearance(Φ𝑡
𝐼𝐴) stability, we de-

fine a composite residual between the detection anchor 

Φ𝑡,𝑑
IA  and the track’s running anchor Φ𝑡,𝑘

IA . 

The 3D anchor residual is measured as the cosine 

dissimilarity 𝑧𝑠 = 1 − cos⟨Φ𝑡,𝑑
IA ,  Φ𝑡,𝑘

IA ⟩ ∈ [0,1] . The 

overall 2D–3D consistency score is then formed as a 
visibility-weighted blend 𝑧cons = 𝛼(𝑣) 𝑧𝑚 + (1 −
𝛼(𝑣)) 𝑧𝑠 , where 𝑧𝑚  is the Mahalanobis distance of 
the 2D pixel residual, and the weight 𝛼(𝑣) increases 

with visibility 𝑣:  𝛼(𝑣) = 𝛼min + (𝛼max − 𝛼min) 𝑣𝜅  , 

defaults 𝛼min = 0.35, 𝛼max = 0.85, 𝜅 = 1.5.  

Missing-IA guard: if fewer than three anchor joints 

in 𝒥  are valid, hold Φ𝑘
IA  and down-weight 𝑧𝑠  via 

𝛼′(𝑣) = min(1, 𝛼(𝑣) + Δhold)  (default Δhold =
0.15).  

e) Gate (self-calibrating quantile): For robust 

association across varying visibility levels, we employ 

an adaptive gating threshold derived from the 

empirical distribution of consistency scores. Visibility 

𝑣 is discretized into three bands: 

𝑏 ∈ {[0,0.3), [0.3,0.7), [0.7,1]}. 

For each band, a target false-reject rate 𝛼FRR(𝑏) 

defines the quantile threshold: 

𝛿gate(𝑣) ≔ Quantile 1−𝛼FRR(𝑏)(𝑧cons), 

The quantiles are estimated online with t-digest or 

P2  over 30–60 s window. During Cold-start, until at 

least 𝑀𝑏 ≥ 200  samples are collected per band, a 

pooled 95th percentile is. Used as a fallback threshold. 

A detection-track pair is accepted if 𝑧cons < 𝛿gate(𝑣), 

and otherwise rejected or deferred to probabilistic 

matching. 

f) Kalman update (2D-only, Joseph form): The pre-

dicted state 𝑥𝑡|𝑡−1  is corrected using the 2D pixel 

measurement 𝑐𝑑 . The Kalman gain is obtained as 

𝐊𝑡 = 𝐏𝑡|𝑡−1𝐇𝜋
⊤𝐒2𝐷

−1. The corrected state and covariance 

are updated as: 

𝐱𝑡|𝑡 = 𝐱𝑡|𝑡−1 + 𝐊𝑡(𝐜𝑑 − 𝐜̂𝑡|𝑡−1), 

𝐏𝑡|𝑡 = (𝐈 − 𝐊𝑡𝐇𝜋)𝐏𝑡|𝑡−1(𝐈 − 𝐊𝑡𝐇𝜋)⊤ + 𝐊𝑡𝐑p𝐊𝑡
⊤. 

The covariance is updated in Joseph form. 

g) From consistency to calibrated assignment cost: 

The combined features, 𝐟 = [ 𝑧𝑚,  𝑧𝑠,  𝑣,  𝑉,  age] are 

mapped to a match probability 𝑃(match) =
𝜎(𝐰⊤𝜓(𝐟)), where 𝜓(∙) denotes feature normaliza-

tion and interaction expansion. The corresponding 

cost is defined as 𝐶 =  −ln𝑃(match) and all gated 

detection–track pairs are arranged into a global nega-

tive log-likelihood (NLL) cost matrix. The final data 

association is obtained by minimizing this matrix via 

the Hungarian algorithm, with default penalties are 

𝐶new = −ln0.1 for new track creation and 𝐶miss =
−ln0.3 for missed detections. 

h) Spawning and state transitions: Duplicate births 

are avoided by deferring any unmatched detection 

within 0.35 m of an existing tentative track.  

Each track follows a lightweight finite-state ma-

chine: Tentative → Confirmed after K=3 consecutive 

matches (≈0.10 s @ 30 fps); Confirmed → Deleted af-

ter M=10 consecutive misses (≈0.33 s); and Un-

matched → Tentative if no nearby confirmed track ex-

ists. These rules ensure temporal stability while allow-

ing rapid adaptation to new entries. 

C. Coordination in Overlap Groups 

When to coordinate. Each FoV ℱi  =  {𝜒: 𝐴𝑖𝜒 ≤
𝑏𝑖}  defines a 3D frustum in world space. For each 

camera 𝑖 , the set of overlapping regions with other 

cameras is 

𝒪𝒾 = {ℱ𝒾 ∩ ℱ𝒿 ∣ 𝑗 ≠ 𝑖,  ℱ𝒾 ∩ ℱ𝒿 ≠ ∅}. 

All Overlap 𝒪𝒾 are precomputed and cached. 

Coordination is activated only when a person’s lifted 



footprint enters any of the cached overlap regions 

(with entry/exit hysteresis). 

a) Global matching uses using metadata: Each 

node device maintains its own tracking records and 

exports lightweight metadata (≈0.2 kB per person) 

whenever a person enters an overlap region. These 

compact messages are transmitted to the Auctioneer, 

which computes cosine-similarity costs between CoM 

and its velocity vectors and resolves associations via 

the Hungarian algorithm, ensuring consistent cross-

view identity alignment with negligible bandwidth 

cost.  

b) QoV-Based Bidding: For camera 𝑖 and person 𝑝 

at time 𝑡 , with keypoint confidence 𝑐𝑜𝑛𝑓𝑗
(𝑝)(𝑡) and 

validity mask 𝑚𝑗
(𝑝)(𝑡) ∈ 0,1 , each keypoint is 

weighted by its anatomical importance 𝑤𝑗 , defined as: 

𝑤𝑗 = {

1.7, {𝑓𝑜𝑟 𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑠 𝑎𝑛𝑑 ℎ𝑖𝑝𝑠 }  (𝑗 =  5,6,11,12)
1.3, {𝑓𝑜𝑟 ℎ𝑒𝑎𝑑 𝑎𝑛𝑑 𝑒𝑦𝑒𝑠 }  (𝑗 =  0,1,2)
1.0, {𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. }

. 

 

𝐾𝐶𝑖
(𝑝)

(𝑡) =
∑ 𝑤𝑗

𝐾𝑃
𝑗=1  confj

(p)
(𝑡) 𝑚𝑗

(𝑝)
(𝑡)

∑ 𝑤𝑗
𝐾𝑃
𝑗=1  𝑚

𝑗
(𝑝)

(𝑡)
, 

𝐾𝑆𝑖
(𝑝)

(𝑡) =
∑ 𝑤𝑗

𝐾𝑃
𝑗=1  𝑚𝑗

(𝑝)
(𝑡)

∑ 𝑤𝑗
𝐾𝑃
𝑗=1

. 

𝐾𝐶𝑖
(𝑝)

(𝑡) denotes the weighted mean confidence over 

valid keypoints, 𝐾𝑆𝑖
(𝑝)

(𝑡)  represents the weighted 

visible-keypoint ratio. 

Then, the overall QoV score is defined using the 

geometric mean: 

𝑄𝑜𝑉𝑖
(𝑝)

(𝑡) = √𝐾𝐶𝑖

(𝑝)
(𝑡) 𝐾𝑆𝑖

(𝑝)
(𝑡). 

Finally, the winning device is selected as: 

𝑖∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖 ∈ 𝐺𝑄𝑜𝑉𝑖
(𝑝)

(𝑡). 

The overall score 𝑄𝑜𝑉𝑖
(𝑝)

represents a geometric 

mean of both confidence and providing a conservative 

yet stable estimate of view reliability. The runner-up 

camera is retained as a secondary bidder for temporal 

failover. 

 

4     Experiments 

Setup. 2× Intel RealSense D435i (30 fps), 2× Jetson 

Orin NX, Gigabit switch, elderly-care mockup (10 

m×8 m). Camera intrinsics provided by the 

manufacturer and loaded from config (no re-

calibration). NTP sync (<10 ms).  

 

a) Local tracking:  

Metrics. For each ground-truth person visible in a 

frame, tracking outcomes are classified as: 

 True Positive (TP): same track ID follows the same 

person as in the previous frame. 

 MISS: the track is lost or temporarily disconnected. 

 SWAP: two persons cross and exchange track IDs. 

Formally, we compare mappings between gt_id and 

track_id from frame t-1 to t. Tracking accuracy is 

defined as 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐺𝑇
  

In addition, we report two complementary 

continuity metrics: 

ACRL (Average Correct Run Length): mean uninter-

rupted TP-segment length normalized by each per-

son’s visible duration—higher values indicate more 

stable tracking. 

FRAG (Fragments per frame): number of TP→MISS 

or TP→SWAP transitions per frame—lower values in-

dicate fewer interruptions. 

These metrics emphasize temporal consistency—how 

long each person remains correctly tracked—rather 

than frame-level precision, which is crucial for fall de-

tection tasks. 

Dataset and Evaluation. Five short single-camera 

RGB–D videos (MV1–MV5) were recorded to 

evaluate tracking consistency under various motion 

and interaction conditions. MV1–MV3 contain single-

person actions (entry, posture change), and MV4–

MV5 include multi-person scenes with partial 

occlusion and crossings. Each sequence spans 53–89 

frames, totaling 625 annotated person instances. 

Tracking performance was evaluated using Accuracy, 

ACRL, and FRAG, along with counts of SWAP and 

MISS events as continuity indicators.  

Table 1. Single-camera tracking performance on five motion 

videos (MV1-MV5) 

Dataset Accuracy SWAP MISS ACRL FRAG 

MV1 0.981 0 1 0.9811 0.000 

MV2 0.986 0 1 0.9857 0.000 

MV3 0.989 0 1 0.9889 0.000 

MV4 0.910 6 3 0.3036 0.040 

MV5 0.962 2 3 0.2790 0.0017 

Mean 0.966 2 2 0.7077 0.014 

 



Results. the proposed temporal-signature tracker 

maintains consistent person IDs even during crossings 

or occlusion, preserving continuous trajectories under 

challenging motion. Table 1 summarizes the 

quantitative results: the tracker achieves over 0.98 

Accuracy and zero fragmentation in single-person 

videos (MV1–MV3), and a mean Accuracy of 0.966 

across all sequences. Performance slightly decreases in 

multi-person videos (MV4–MV5) due to crossing-

induced swaps (reduced ACRL, small nonzero FRAG). 

Overall, the results confirm strong temporal stability, 

providing a reliable basis for downstream fall 

detection relying on uninterrupted motion cues. 

b) Identity Matching: 

In the overlapping region between two cameras, 750 

synchronized frames were collected, yielding 54 valid 

bidding instances (i.e., persons simultaneously 

visible in both views). Each camera transmitted 

compact metadata to the coordinator, which computed 

cosine similarity between pairs and applied the 

Hungarian algorithm for final matching. 

As summarized in Table 2, the proposed bidding-based 

matching achieved 75.9 % accuracy, 93.1 % 

precision, 71.1 % recall, and an F1 score of 0.81. 

These results confirm that the proposed logic ensures 

reliable identity alignment across overlapping cameras, 

maintaining high precision under partial occlusion and 

cross-view motion. 

Table 2. Multi-Camera Identity Matching in Overlapping Region 

Confusion Matrix Predicted Same Predicted 

Different 

Actual Same 27 11 
Actual Different 2 14 

These results demonstrate that the proposed bidding 

logic ensures reliable identity matching across 

overlapping cameras, maintaining high precision even 

under partial occlusion and cross-view motion. 

c) Fall Detection Accuracy by QoV: 

To evaluate how QoV affects fall-detection 

performance, we employed the Spatial–Temporal 

Graph Convolutional Network (ST-GCN) [13], trained 

on the FUKinect-Fall dataset [14]. The dataset 

provides absolute 3D joint coordinates of humans 

performing both fall and non-fall activities, allowing 

robust joint-based learning. To further analyze model 

behavior under different QoV, we recorded additional 

fall sequences with a single camera while varying the 

subject’s falling direction and posture. 

Using camera localization results, 3D keypoints were 

converted into a common world coordinate frame, and 

20 consecutive frames (≈1.2 s) from each sequence 

were used as input. As shown in Fig. 2, the fall-

detection accuracy exhibits a strong dependence on the 

QoV. When the QoV score is below 0.4, the mean 

accuracy remains low at around 0.42, indicating 

unreliable classification due to poor keypoint visibility. 

As 𝐐𝐨𝐕 increases beyond 0.5, the accuracy sharply 

improves and stabilizes above 0.85 for QoV > 𝟎. 𝟔, 

demonstrating a clear positive correlation between 

QoV and detection reliability 

 

Figure 2. Mean fall-detection accuracy of the ST-GCN model 

across different QoV ranges. Each point indicates the averaged 
accuracy within a given QoV interval, while the bars represent the 

number of samples included in each bin. 

5     Conclusion 

We presented a distributed multi-camera fall-

detection system combining temporal-consistency 

tracking, overlap-aware bidding, and QoV analysis. 

The tracker achieved 0.966 accuracy with stable 

continuity (high ACRL, near-zero FRAG), confirming 

its ability to maintain consistent identity tracking 

under occlusion and cross-view motion. The proposed 

bidding-based mechanism reliably associated 

identities across overlapping cameras, achieving an F1 

score of 0.81 with high precision.  

QoV analysis confirmed a positive correlation 

between observability and detection reliability. 

Overall, the system offers a scalable basis for reliable 

fall detection in distributed edge-camera systems. 
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