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Abstract

RGB-D SLAM systems face a fundamental
challenge in optimally fusing triangulation-
based depth with sensor measurements.
Existing approaches rely on static rules and
fixed thresholds that cannot adapt to
varying environmental conditions or exploit
Bundle Adjustment feedback. This paper
introduces a novel neural network-based
depth fusion framework for ORB-SLAM [5]
that learns optimal combination weights
directly  from  Bundle  Adjustment
optimization outcomes. Our approach
formulates depth fusion as a Bayesian
inference problem, where a lightweight
four-layer network predicts precision
weights based on geometric features
including  parallax  angle, distance
magnitude, and measurement discrepancy.
The network is trained on fusion samples
with ground truth weights derived from pre-
and post-optimization depth errors,
enabling data-driven strategies that emerge
from actual SLAM performance rather than
hand-crafted heuristics. We integrate our
11,009-parameter network seamlessly into
ORB-SLAM2’s [6] LocalMapping module
using ONNX Runtime, maintaining real-
time performance. Comprehensive
evaluation on TUM RGB-D datasets
demonstrates consistent improvements: 6%
reduction in Absolute Trajectory Error over
baseline ORB-SLAM2. 11% improvement
over rule-based fusion, and 0.99%
reduction in reprojection error. Our work
bridges the gap between learning-based
sensor fusion advances and sparse feature-
based SLAM, proving that neural
approaches can enhance classical geometric

methods without sacrificing computational
efficiency.
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1 Introduction

ORB-SLAM has become the de facto standard in
visual SLAM over the past decade, enabling
applications from autonomous driving to drone
navigation and augmented reality. By leveraging
ORB feature-based triangulation, it achieves strong
geometric consistency and precise localization. Yet,
as a monocular system, ORB-SLAM faces inherent
limitations: the inability to estimate absolute scale
causes scale drift, and insufficient baseline often
leads to unstable depth estimation.

To overcome these issues, researchers have integrated
RGB-D sensors into ORB-SLAM. RGB-D SLAM
resolves the scale ambiguity by directly measuring
depth. but introduces sensor-specific constraints such
as measurement noise, limited operating range,
and invalid readings on reflective or transparent
surfaces. Thus, the central challenge becomes: how
to optimally fuse triangulation-based depth (d,,;)
with raw sensor depth (d,,,,) to achieve robust and
accurate localization.

Existing RGB-D fusion methods for ORB-SLAM
remain largely rule-based. relying on fixed
thresholds or static weights. These heuristics cannot
adapt to changing environments or exploit Bundle
Adjustment (BA) feedback. leading to degraded
trajectory accuracy and accumulated drift during
long-term operation. In contrast, sensor fusion in
broader robotics has shifted toward learning-based
strategies—for example, Stereo-LiDAR fusion and
Active Stereo through Virtual Pattern Projection
achieve real-time multi-sensor integration. However,
such advances have not been fully applied to ORB-
SLAM. whose sparse feature-based architecture
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conflicts with the dense computation typically
required by neural networks.

Recent progress has nonetheless demonstrated the
potential of neural methods for SLAM. SuperPoint-
SLAM [7] replaces ORB features with learned
descriptors, achieving over 90% error reduction on
benchmarks. EC-SLAM [3] and DVN-SLAM [10]
leverage neural implicit representations for real-time
dense mapping, while TinyDepth [2] enables
lightweight monocular depth estimation on embedded
devices. Yet, these approaches mainly target feature
extraction or scene representation. leaving the
problem of adaptive depth fusion in ORB-SLAM
unresolved.

This paper introduces a neural network-based depth
fusion framework that directly learns optimal
combination weights from Bundle Adjustment
feedback. Our key insight is that the reliability of
depth sources varies systematically with geometric
context—factors such as parallax angle, distance
magnitude, and measurement discrepancy form
learnable patterns. We formulate depth fusion as a
Bayesian inference problem, where a lightweight
neural network predicts precision weights based on
geometric features. The network is trained on fusion
samples collected from experimental datasets, with
ground truth weights derived from pre- and post-
optimization depth errors.

Our main contributions are as follows:

1. Data-driven fusion learning: We present a
novel approach that learns adaptive depth
fusion weights from Bundle Adjustment
optimization, enabling fusion strategies to
emerge from actual SLAM performance
rather than hand-crafted rules.

2. Lightweight neural integration: We design
a compact four-layer network (11,009
parameters) that integrates seamlessly with
ORB-SLAM?2, adding negligible overhead
and maintaining real-time performance
through ONNX Runtime deployment.

3. Comprehensive validation: We
demonstrate consistent improvements,
reducing Absolute Trajectory Error by 6%
over baseline ORB-SLAM?2 and by 11%
over rule-based fusion, showing that learned
strategies outperform traditional heuristics.

The remainder of this paper is organized as follows:
Section II reviews related work. Section III presents
the probabilistic fusion framework and neural
architecture, Section IV evaluates our approach
through extensive experiments, and Section V
concludes with future directions.
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2 Related Work

Accurate depth estimation forms the foundation of
visual SLAM performance, directly determining
camera frajectory accuracy, map point generation
quality, and global consistency maintenance. Every
aspect of SLAM—from triangulation to Bundle
Adjustment—relies on reliable depth information.
The evolution from ORB-SLAM to ORB-SLAM?2
reflects attempts to address this challenge: ORB-
SLAM achieved remarkable monocular performance
through triangulation but suffered from scale
ambiguity and baseline requirements, while ORB-
SLAM2 integrated RGB-D sensors to provide
absolute scale. However, ORB-SLAM2’s binary
selection between triangulation and sensor depth
based on fixed thresholds fails to exploit their
complementary strengths, particularly when RGB-D
measurements suffer from noise, range limitations,
and surface-dependent failures.

Neural Enhancement of ORB-SLAM. Recent
advances have revolutionized feature extraction and
matching.  SuperPoint-SLAM3 replaces ORB
features with learned descriptors, reducing translation
error by over 90% on benchmarks. GCNv2-SLAM
[8] uses a CNN-based keypoint and descriptor
network to robustly match features even in textureless
regions. These improvements significantly enhance
feature quality but do not address the fundamental
depth fusion problem—better features still require
optimal combination of triangulation and sensor
depth.

Neural RGB-D SLAM Systems. The emergence of
neural implicit representations has transformed dense
mapping. EC-SLAM achieves 21 Hz performance
through efficient TSDF encoding and DVN-SLAM
handles dynamic environments wvia local-global
representations. However, these dense neural
approaches are architecturally incompatible with
ORB-SLAM’s sparse, CPU-based framework,
operating on fundamentally different computational
principles.

Lightweight Depth Networks. Recent work makes
neural depth feasible on embedded platforms.
TinyDepth achieves real-time transformer-based
depth on edge devices, FastDepth [9] demonstrates
178 FPS through quantization, and MobileDepth [4]
leverages efficient convolutions. While proving
neural networks can meet real-time constraints, these
methods focus on generating depth from RGB rather
than fusing existing depth sources—a distinctly
different problem.

Multi-Sensor Fusion Advances. The fusion
community has embraced learning-based strategies
with remarkable success. Stereo-LiDAR fusion [11]
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combines complementary sensors through Semi-
Global Matching, Active Stereo through Virtual
Pattern Projection [1] compensates depth failures
with active illumination, and attention-based methods
automatically discover sensor complementarity.
These approaches consistently outperform fixed
strategies by 15-30%, operating at feature, data, and
result levels. Yet paradoxically, while transforming
autonomous driving, these advances haven’t reached
ORB-SLAM’s depth fusion.

Direct Depth Fusion in ORB-SLAM. Several works
have specifically addressed depth fusion within ORB-
SLAM frameworks. ORB-TEDM [13] presents an
RGB-D SLAM approach that fuses ORB
triangulation estimates with depth measurements,
incorporating uncertainty models for both depth
sources through covariance estimation using a
Covariance Intersection (CI) filter. DRM-SLAM [12]
proposes depth fusion between sparse SLAM samples
and CNN-predicted dense depth maps for enhanced
monocular reconstruction, addressing the scale
ambiguity problem in monocular SLAM. However,
these approaches rely on predetermined fusion
strategies with fixed uncertainty models and do not
leverage Bundle Adjustment feedback for adaptive
weight learning, limiting their ability to adapt to
varying geometric and environmental conditions.

Research Gap. While existing approaches like ORB-
TEDM explore triangulation-depth fusion with
uncertainty quantification, no existing work learns
adaptive fusion weights from Bundle Adjustment
optimization feedback—the process that ultimately
reveals depth estimate quality. Current methods
cannot adapt fusion strategies based on actual
optimization outcomes, ignore geometric context
evolution, and fail to leverage the rich information

provided by Bundle Adjustment convergence patterns.

Our work addresses this gap by introducing data-
driven fusion weight learning from BA feedback.
enabling strategies that emerge from actual SLAM
performance rather than predetermined heuristics.

3  Proposed Method

Our approach extends ORB-SLAM2’s Local
Mapping module by integrating a neural network-
based depth fusion system during map point creation.
The standard ORB-SLAM?2 pipeline consists of four
main components: Tracking. Local Mapping. Loop
Closing, and Bundle Adjustment. Depth estimation
occurs primarily during the Local Mapping stage
when new 3D map points are generated from
triangulated feature correspondences. While ORB-
SLAM?2 incorporates RGB-D sensor data. it relies on
static rules for selecting between triangulation depth
(d tri) and sensor depth (d raw), leading to
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suboptimal fusion decisions that cannot adapt to
varying environmental conditions.

We insert a Neural Depth Fusion module into the
map point creation process within
LocalMapping::CreateNewMapPoints(), enabling
adaptive weight prediction based on geometric

context. This integration leverages Bundle
Adjustment feedback to learn optimal fusion
strategies that emerge from actual SLAM

optimization performance rather than hand-crafted
heuristics.

Probabilistic Depth Fusion Framework:

We formulate depth estimation as a probabilistic
fusion problem where two independent depth sources
are optimally combined. Let dy;and d,,,, represent
triangulation and sensor depth estimates, respectively.
We model each depth source as a Gaussian random
variable:

dui  ~ N (e, 0;)

draw ~ N (.uraw: arzaw)
where p, and o? represent the mean and variance of
each depth source.

The optimal Bayesian fusion for two independent
Gaussian depth estimates yields the maximum
likelihood fused depth:

Trilltri + Trawbraw

d =
fused Ttri + Traw

where 7, = 1/02 are the precision parameters, and
the fused variance is:
1
Tiri + Teaw
Neural Network Weight Prediction:

Ofpsed =

The key insight is that optimal precision weights T,
are not constant but depend on geometric context. We
define a neural network fg: R* — [0,1] that predicts
the depth weight w:

w = fﬂ (dtnl dra\\-‘; 6:- a)

where § = |d; — d.,| is the discrepancy and « is
the parallax angle. The final fusion becomes:

Agpa = (1 —w) dyg + W - diay
Ground Truth Generation via Bundle Adjustment:

We establish ground truth through Bundle
Adjustment optimization. Given keyframe poses {T;}
and 3D points {X;}. Bundle Adjustment minimizes:

min Il z;; — (T, X)) 12
{Ti}_{xj}ZP( i — (T, X)) I1?)
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where z;; are 2D observations and p(-) is a robust
kernel.

The optimal fusion weight minimizing distance error
after Bundle Adjustment is defined as:

x |dopt - dﬂwl
|doge — Ayl + [dope — deaw| + €

where d., is the Bundle Adjustment-optimized
distance and € prevents division by zero. This weight
assignment minimizes the expected fusion error under
the assumption that distance errors are proportional to
reliability.

w

Neural Network Architecture and Training:

Our network fy uses a 4-layer architecture with ReLU
activations and dropout regularization:

hy =ReLU(W;x + b))

h, = Dropout(ReLU(W,h, + b,))

h; = Dropout(ReLU(W3h, + b3))

w = Sigmoid(W,h; + by)
where X = [dy;, draw, 8, @]” and 8 = (W, b;}i-,.

Training minimizes Mean Squared Error:
L
£(6) =3 ) (Wn — w3)?
n=1

Under Lipschitz continuity of fg and bounded
gradients, Adam optimization converges to a
stationary point.

SLAM Integration and Real-time Implementation:

The neural network inference occurs during map
point creation in ORB-SLAM?2’s LocalMapping
thread:

Algorithm 1: Neural Network Fusion in SLAM

Input: Feature matches, camera poses

Output: Fused 3D points

Compute d,; via triangulation;

Extract d,,, from depth sensor;

Calculate features: § = |dy; — dp.y . parallax a:
Predict weight: w = fg(dy;, deaw, 0, @):

Fuse: dgga) = (1 —w) " dig + W * dioy:

Create 3D point using dsg,:

Computational Complexity: The neural network
inference has O(1) complexity per map point with 4
input features and 11.009 parameters, adding
negligible overhead to SLAM operation.
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4 Experiments
Experimental Setup:

Hardware Platform. Our experimental setup utilizes
a TurtleBot3 robot equipped with an Intel RealSense
D435i RGB-D camera for depth sensing and visual
odometry. The system runs on an NVIDIA Jetson
Orin Nano embedded computing platform, providing
sufficient computational resources for real-time
SLAM processing while maintaining the portability
required for mobile robotics applications.

Dataset Collection. We collect a comprehensive
fusion dataset during SLAM operation using an initial
rule-based fusion method. Training data is generated
from each corresponding dataset sequence within the
first 100 keyframes. Each sample contains four key
features: triangulated distance ( dg; ), raw sensor
depth ( d,q, ). distance discrepancy (6 = |dgyy —
d, o] ). and parallax angle. Ground truth fusion
weights are computed post-Bundle Adjustment
optimization by comparing distance estimation errors:

|dopt - drawl
|dopt - dtril + |dopt - drawl +€

gt_weight =

where d,,, represents the Bundle Adjustment-
optimized distance and € =1X10"° prevents
division by zero.

Training Data Augmentation. To enrich our dataset,
we modified LocalMapping::ProcessNewKeyFrame
to recompute both triangulated and RGB-D depths for
all observed map points. not just newly created ones.
When keyframes observe existing map points from
the tracking thread, we perform fresh triangulation
with optimal neighbor keyframes and compare
against current RGB-D measurements. This strategy
generates multiple training samples per map point
across diverse viewing angles and parallax conditions,
substantially expanding our neural network training
dataset beyond the initial samples.

Neural Network Architecture. Our GT Weight
Predictor employs a four-layer fully connected
architecture with progressive dimension reduction
(128—64—32—1). The network uses ReLU
activations, 20% dropout for regularization, and
sigmoid output to ensure fusion weights remain in
[0.1]. Training is conducted for 5000 epochs using
Adam optimizer with learning rate 0.001 and Mean
Squared Error loss.

SLAM Integration. The trained PyTorch model is
exported to ONNX format for efficient C++ inference
within ORB-SLAM2. Runtime fusion decisions are
made using four input features at map point creation,
with the neural network predicting optimal depth
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reliability weights that guide weighted combination
of triangulation and sensor depth estimates.

Evaluation Metrics:
We evaluate our approach using two primary metrics:

Neural Network Performance: Training and test
Mean Squared Error (MSE) and R? scores assess the
model’s ability to predict optimal fusion weights.

SLAM Accuracy: Absolute Trajectory Error (ATE)
measures the Euclidean distance between estimated
and ground truth camera trajectories, providing direct
assessment of SLAM accuracy improvements.

Results:

Neural Network Training Performance. Figure 1
illustrates the training convergence and prediction
accuracy of our neural network model. The diagonal
pattern in the predictions vs. actual plot demonstrates
strong correlation between predicted and ground truth
fusion weights, validating the model’s learning
capability.

Our neural network  demonstrates

generalization capabilities:
Training Performance: MSE = 0.0369, R =0.5123

Test Performance: MSE = 0.0367, R* = 0.5089

The consistent performance between training and test
sets indicates effective learning without overfitting.
The R? score of approximately 0.51 demonstrates that
our neural network captures 51% of the variance in
optimal fusion weights, representing significant
improvement over random fusion strategies.

Scene  Reconstruction  Results. Figure 2
demonstrates the quality of 3D scene reconstruction
achieved using keyframes extracted through our
neural fusion approach. The reconstructed scene
shows improved geometric consistency and reduced
noise compared to baseline methods, validating the
effectiveness of our learned depth fusion strategy.

strong

Predictions vs Actual (Test Set)

Training Loss

Predicted ge_weight

Figure 1: Training loss convergence (left) and
predictions vs. actual ground truth weights (right)
showing diagonal correlation pattern indicating
effective learning.
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Figure 2: 3D scene reconstruction using keyframes
extracted with our neural depth fusion approach,
showing improved geometric consistency and
reduced reconstruction artifacts.

Reprojection Error Analysis. Figure 3 presents
comprehensive reprojection error analysis comparing
our neural fusion approach with vanilla ORB-SLAM?2.
The time series shows consistent error reduction
throughout operation, while statistical distributions
demonstrate  improved accuracy. Performance
summary reveals mean reprojection error reduction
from 1.4957px to 1.4810px (0.99% improvement)
across 5,694 measurements.

SLAM Trajectory Accuracy. Figure 4 provides a
visual comparison between vanilla ORB-SLAM?2 and
our neural fusion approach on the frl/desk dataset,
demonstrating the improved trajectory estimation
achieved through learned depth fusion weights.

Aewemstorn L Civte Torst

Figure 3: Reprojection error analysis: (a) error over
time,. (b) error distribution. (c) statistical box plot, and
(d) rolling average comparison. Our neural fusion
consistently achieves lower reprojection errors
compared to vanilla ORB-SLAM?2.
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~

Figure 4: Trajectory comparison on fr1/desk dataset:
(a) vanilla ORB-SLAM?2 (left) and (b) our neural
fusion approach (right). The neural method produces
more accurate and consistent trajectory estimation
with reduced drift.

Table 1 presents the Absolute Trajectory Error
comparison across three approaches:

Method ATE Ennor

firlldesk filxyvz fi2xyz | fi3long office
ORB- 0017715 | 0010078 | 0003811 0011457
SLAM2
Rule- 0037248 | 0009602 | 0004018 0012191
based
Neural 0015512 | 0009748 | 0003585 0010670
(Ours)

Table 1: Absolute Trajectory Error Comparison on
TUM RGB-D Datasets

Our neural network fusion approach consistently
achieves competitive trajectory accuracy across
all four datasets:

1. frl/desk: 12% improvement over ORB-
SLAM?2, 58% improvement over rule-based
fusion

2. frl/xyz: 3% improvement over ORB-
SLAM?2, comparable to rule-based fusion

3. fr2/xyz: 6% improvement over ORB-
SLAM?2, 11% improvement over rule-based
fusion

4. fr3/long_office: 7% improvement over
ORB-SLAM?2, 12% improvement over rule-
based fusion

Analysis and Discussion:

Our neural fusion approach demonstrates superior
performance over traditional methods by learning
adaptive, data-driven strategies from Bundle
Adjustment feedback. The network captures complex
relationships between geometric features and optimal
fusion weights, achieving consistent improvements
across evaluation metrics while maintaining
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computational efficiency with only 11,009 parameters.
Unlike rule-based methods that rely on fixed
heuristics, our approach adapts to varying
environmental conditions and sensor characteristics,
resulting in reduced ATE errors and improved
trajectory accuracy across all tested datasets.

5 Conclusion

This paper presents a novel neural network-based
depth fusion framework for ORB-SLAM that learns
optimal combination weights from Bundle
Adjustment optimization outcomes. Our lightweight
11,009-parameter network successfully formulates
depth fusion as a Bayesian inference problem,
achieving 6% reduction in Absolute Trajectory Error
over baseline ORB-SLAM?2 and 11% improvement
over rule-based fusion. The approach demonstrates
that neural methods can enhance classical geometric
SLAM systems without sacrificing computational
efficiency, opening new avenues for targeted neural
enhancements in sparse feature-based SLAM while
maintaining real-time performance requirements.
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