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ABSTRACT OF THE THESIS

An LLVM-IR Datagraph-Based Simulator

for Flexible Design Space Exploration

over Accelerator Architectures

by

Zhengrong Wang

Master of Science in Computer Science

University of California, Los Angeles, 2018

Professor Anthony John Nowatzki, Chair

In this thesis, we present a novel simulation framework designed for flexible design space

exploration over accelerator architectures. A conventional cycle-level simulator can bring

accurate simulation results, but it requires enormous efforts to simulate the performance

of architectures. Trace-based and datagraph-based simulation frameworks, which modify

or argument the ISA, bring some flexibility for architecture exploration, but work at the

ISA level and lose high-level information from the compiler. Our framework tries to achieve

flexibility of datagraph-based simulator while maintaining high-level compiler information.

The main contribution of this work can be divided into two parts. First, an LLVM-IR

tracer and parser are developed to generate a datagraph at LLVM-IR level, which contains

high-level compiler information and is flexible to be manipulated to reflect the desired archi-

tecture change. Second, we build an LLVM-IR datagraph simulator inside gem5 to leverage

gem5’s existing memory framework and provide accurate simulation results. We believe this

framework would be useful for rapid design and verification of new architecture proposals.
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CHAPTER 1

Introduction

As we are hitting the end of Dennard scaling, accelerators have been developed and inte-

grated into conventional general purpose processors to improve the performance and energy

consumption. Generally, an accelerator can be categorized in three dimensions.

• Exposed vs. Transparent. For an exposed accelerator, the programmer is aware of its

computation model and can directly control it at the source code level. The transpar-

ent approach, however, tries to automatically identify and accelerate some common

patterns in various workloads without direct intervention from the programmer.

• Fixed Function vs. Programmable. A fixed function accelerator is highly specialized

for a particular workload or algorithm and is typically more domain specific, e.g.,

ASIC, while a programmable accelerator can be configured via special instructions,

e.g., CGRA.

• Core-Integrated vs. Standalone. Some accelerators are integrated with the proces-

sor and its cache hierarchy. They usually exhibit tight coupling with the core, e.g.,

BERET [GFA11], DySER [GHN12], etc. Others can be more independent, using their

own interface to communicate with other subsystems, e.g., GPU.

This thesis will focus on modeling a transparent programmable accelerator, which is

integrated with the processor and shares its cache hierarchy. Figure 1.1 shows a diagram of

our target accelerator.

The conventional workflow of developing a new transparent programmable accelerator

usually starts by extending the ISA with special instructions for the accelerator. If statically
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Processor Accelerator

Cache Hierarchy

Accelerator ISA

Figure 1.1: A diagram of our target accelerator.

pattern recognization is used, the compiler has to be modified to identify and transform

these patterns to the extended ISA. Otherwise, pattern recognization and transformation

will be integrated into general purpose processors. Developing the ISA involves many per-

accelerator tasks, e.g., developing assembler, ISA encoder, instruction selector, etc., and is

not flexible for design space exploration.

Compared with a conventional cycle-level simulator, datagraph-based simulation is more

flexible. The datagraph is transformed to reflect the desired architecture change. An ex-

isting example is transformable dependence graph (TDG) [NGS15]. These simulators are

based on µDG [FBH03], which contains low-level hardware events for accurate simulation.

However, high-level compiler information is missing from the datagraph, which may limit

the transformer’s ability to identify more acceleration opportunities. Some other simulators

are based on the LLVM-IR datagraph, e.g., Aladdin [SRW14a] and gem5-Aladdin [SRW14b].

However, Aladdin and gem5-Aladdin are for fixed-function accelerators and can not model

transparent accelerators. Inspired by these frameworks, it is natural to propose the following

goal:
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Goal. Design an accurate, flexible datagraph-based simulator for cross-accelerator explo-

ration, with full support from the compiler.

Research Questions. This work focuses on the development and verification of the in-

frastructure. However, the long-term goal of this work is to develop the tools that make

answering the following research questions tractable.

1. Domain Interaction. What set of accelerators would be most useful in a specific do-

main?

2. Accelerator/Memory Interaction. Is it possible to specialize the interface between ac-

celerators and memory and other systems?

3. Novel Accelerator Design. Does the combination of static compiler analysis and dy-

namic information from the datagraph provide some insights for new accelerator de-

signs?

4. Multi-processor Accelerator Design. What would be the most efficient accelerator con-

figuration for a system with multiple processors? What are the gain and cost if the

accelerator is temporally multiplexed among processors?

Proposal. We tackle the problem in three main aspects.

• To leverage high-level information, the datagraph should be constructed and trans-

formed within some compiler framework, instead of low-level ISA instructions or micro-

operations. As a mature open-source compiler framework, LLVM provides some pow-

erful analysis passes and is a reasonable choice.

• As the datagraph is based on LLVM-IR, which is a high-level abstraction compared

with ISA instruction or micro-operation trace, there is no low-level hardware infor-

mation in the datagraph itself. Thus to maintain accuracy, the simulation should not

be based on the datagraph only, but take a hybrid approach – the datagraph would

be simulated in a conventional simulator, gem5, to leverage its memory hierarchy and

other subsystems.
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• For flexibility, the framework should be extendable for new accelerator design. Consid-

ering that a major work of designing new accelerators is defining new instructions and

their functionality, we decouple the node definition and execution from the datagraph

transformer and simulator. Users can implement their own transformer to rewrite the

datagraph and introduce new instructions. For each new instruction, the datagraph

simulator will execute a user-defined execution function, which defined its functionality.

The rest of the thesis is organized as: Chapter 2 discusses the design of the whole

framework and how to maintain flexibility; Chapter 3 shows the verification results, and

compare with other works; Chapter 4 concludes and also discusses possible future work

direction.
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CHAPTER 2

Design

In this chapter, we explain the high-level design of the framework. Figure 2.1 shows the

general workflow to use the framework:

1. The source code is instrumented by an LLVM pass and compiled to an instrumented

binary. When run, this binary will produce a detailed LLVM-IR trace.

2. An LLVM-IR datagraph is constructed from the generated trace, and necessary infor-

mation is gathered for replay simulation later. This step will also produce a replay

binary, which is used later for replay simulation.

3. Users can transform this datagraph to reflect any architecture design they want to

explore. The transformed datagraph, along with the replay binary, can be feed into

our replay simulator with an integrated memory system.

4. Depending on the simulation result, a user can keep changing their architecture design

and go back to step 3, as illustrated by the dashed line in Figure 2.1.

2.1 LLVM-IR Tracer

To construct an LLVM-IR datagraph, a trace of executed LLVM-IR instructions and the

runtime value of their parameters and results must be generated. Since LLVM-IR is an

intermediate representation, it can not be directly run on a host machine or a conventional

architecture simulator, but in an LLVM-IR interpreter with JIT support. One possible

solution is to modify the official LLVM-IR interpreter and trace every executed instruction.

However, this approach has mainly two drawbacks:
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Figure 2.1: The general workflow.

• The LLVM-IR interpreter explores JIT to compile LLVM-IR to native assembly code,

which will lose the fine-grained information of each LLVM-IR instruction.

• Running LLVM-IR in an interpreter directly may result in degenerated performance

compared with static compiling. It may take a long time to generate traces for com-

plicated benchmarks.

To solve these problems, we took another approach to instrument the LLVM-IR directly.

The source program will first be compiled to LLVM-IR bytecode by any suitable compiler

frontend, e.g., clang for C. A special LLVM optimization pass will loop through the LLVM-IR

bytecode, and insert a function call to a special trace function for each LLVM-IR instruction.

This special trace function will log the basic information of the traced LLVM-IR instruction,

along with the runtime values of its parameters and results (if any). There are two special
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cases worth mentioning:

• The φ node is introduced to LLVM-IR to maintain SSA form. It will pick the parameter

associated with the incoming basic block. There is no need to trace the runtime values

of φ node’s parameters because the incoming basic block can be determined by looking

at the previous traced instruction.

• If the traced value is of a primitive type, e.g., int, float, then it can be passed to the

trace function as a variadic argument. However, if it is a structure or a vector, it

can not be treated as a variadic argument as it is too large to pass directly. In this

case, a special slot is allocated on the stack, and the traced function will first store the

value to the slot and then pass its address to the trace function. The trace function

can read the value from that address. To reduce the overhead on stack allocation, the

instrument pass can track the allocated slots and reuse them when there is a match.

Finally, the instrumented LLVM-IR is compiled and linked to a binary, which can be

executed directly on the host machine and will produce a detailed trace. Compared with the

interpreter approach, this one has better performance since the traced binary is executed

directly on a host machine.

Note that even the trace is generated on one host machine, it can still be used to simulate

the performance of architectures different than the host machine. This is because LLVM-IR

is designed to be target-independent, and the trace of LLVM-IR on one architecture should

be the same as those on other architectures.

2.2 LLVM-IR Datagraph Construction

It is straightforward to construct the datagraph once we have the trace. The datagraph

constructor reads in the source LLVM-IR bytecode and the trace and produces an LLVM-

IR datagraph for further transformation and simulation. To leverae the existing LLVM-IR

framework, the constructor is implemented as an LLVM-IR optimization pass. This allows
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the constructor to access the full compiler information and reduces the workload of the tracer

as less information is required to be traced. This also reduces the required trace size.

2.2.1 Handle Dependence

In the constructed datagraph, each node represents a dynamic LLVM-IR instruction. The

directional edge from node i to node j is denoted as i → j, and means that node j is

dependent on node i. There are three types of dependence needed to be tracked in the

datagraph:

• Register dependence.

LLVM-IR assumes an infinite number of registers, so here the term of “register de-

pendence” does not mean dependence between ISA registers, e.g., %rax. Instead,

instruction i has register dependence on instruction j when it takes the output of in-

struction j as an operand. This is trivial to handle, as it can be determined entirely

during compile time with the help of LLVM framework. The only exception is the φ

instruction, which should only have register dependence on the operands corresponding

to the incoming basic block, and we can only collect this information from the trace.

• Memory dependence.

For the load and store instructions, the virtual address and the size of their access are

logged in the trace. During the construction of the datagraph, a load map and a store

map are maintained. The load map maps each memory address to the latest dynamic

load instruction which accesses that address, while the store map does the same thing

for the store instruction. These two maps are used to detect read-after-write, write-

after-write and write-after-read memory dependence.

• Control dependence.

The control dependence is also trivial to handle in the LLVM framework. For each

dynamic LLVM instruction i, we search for the latest branching dynamic LLVM in-

struction (br, switch, etc.) j that comes before i. If found, we make i have control
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dependence on j.

2.2.2 Remove φ Instruction

LLVM-IR introduces φ instructions to maintain SSA form. However, it is typically not

mapped to any specific ISA instruction or does any computation, so it is reasonable to

remove it from the constructed datagraph. This can be done in two steps:

1. In order to not break the dependence relationship, for a φ instruction i and arbitrary

instruction j, k, if there exists a chain of k → i → j, it is replaced by an edge k → j.

This will effectively remove all the edges of the φ instruction.

2. Since there is no edge between φ instructions and other instructions after step 1, now

we may safely remove them from the datagraph.

2.2.3 Propagate Memory Base and Offset

The virtual address recorded in the trace represents the memory layout for that single run.

However, the memory layout may change in the replay phase, as the trace may be replayed

for architectures with different memory layout, or simply because of dynamically allocated

memory. This will invalidate the virtual address in the trace, and we can not use them

directly when replaying the trace.

To solve this problem, we break every virtual address in the trace into two parts: base

and offset, where base is a string and offset is a integer. During replay, the simulator

will maintain a map BaseMap, which will map base to the correct virtual memory address.

When accessing the memory, the virtual address is computed with Equation 2.1.

vaddr = BaseMap[base] + offset (2.1)

Here we explain how to break the virtual address into base and offset during datagraph

contruction. For any virtual address in the datagraph, we initialize its base to an empty
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string and offset to 0. Then we fill in its base and offset depending on which instruction

generates it.

• getelementptr

In LLVM-IR, getelementptr is the most frequent instruction used to generate address.

Suppose we have an instance of getelementptr in the trace as:

result = getelementptr ptr, x (2.2)

Then in the datagraph, result will have the same base as ptr, and its offset is

computed using the run time value of result and ptr as Equation 2.3.

result.offset = ptr.offset + result.value− ptr.value (2.3)

• load and alloca

Special handling is required for both load and alloca instruction, as they can intro-

duce a new base into the graph. For load instruction, if it loads an pointer value

from the memory, then we set its base to its own name and offset to 0. This is

crucial to support some types of indirect memory access, e.g., linked list traversal and

tree traversal, since this pointer may be used to access memory later. For alloca,

it allocates some spaces on the stack and returns the address of allocated space. We

handle it the same way as load instruction so that the returned address can become a

new base for later access.

For any other instructions, we propagate the operands’ base and offset to the result

if it is reasonable to do so. For example, it is reasonable to assign the operand’s base and

offset to the result for bitcast instruction, but not for add.

Notice that our algorithm implicitly assumes that the offset will remain constant for a

program if the input is fixed, and only the base can be different due to dynamic memory

allocation or different memory layout. In most cases, this is true. For example, the offset

of a structure field is usually constant. However, if the programs have some time-dependent
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behavior for a fixed input, our framework cannot handle this and will access the wrong

memory location. An example would be a program using the current time as the seed to

access an array randomly. In such case, the offset is indeterminable from the trace. The

only way to support this case is to bring in a full LLVM-IR interpreter into the simulator and

compute the address during replay, which is too complicated and also loses the flexibility of

datagraph-based simulation.

2.3 LLVM-IR Datagraph Replay

Once the datagraph is ready, it will be replayed in our datagraph simulator. To leverage the

memory hierarchy of existing framework, the datagraph simulator is integrated into gem5.

Figure 2.2 illustrates the whole diagram. There will be 2 CPUs working together in the

system. One is a normal CPU and takes in an instrumented binary. The other one is our

datagraph simulator. We need the normal CPU here because the program may link to some

precompiled library. Since we do not have the source code of the library, these parts of

the code cannot be traced and replayed by our framework, but can only be executed in

the normal CPU. When it comes to replay a datagraph, the normal CPU will switch over

to the datagraph simulator and suspend until it is done. Both CPUs will interact with

the same memory hierarchy, which is essential to simulate the memory access behaviors

accurately. Figure 2.3 shows the timeline of a typical transition to the accelerated region

during datagraph replay.

2.3.1 Switch between the Normal CPU and the Datagraph Simulator

Currently, our framework supports datagraph replay at the function level. A function is

defined as “replayable” if all of the functions reachable from it are traced, which means that

we will have the full trace from entering this function until it returns. This ensures that the

datagraph for a “replayable” function is complete and the datagraph simulator won’t need

help from the normal CPU in the middle of simulation.

To construct a replay binary, the body of a “replayable” function is removed, and some
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Replay Binary LLVM-IR Datagraph

Normal CPU Datagraph Simulator

Cache Hierarchy

Figure 2.2: Overview of replay framework.

special instructions are inserted so that when the normal CPU enters the “replayable” func-

tion, it will switch to the datagraph simulator. One way to implement this is to insert some

ioctl calls into the body and add a special driver in the system, which will suspend the

normal CPU and activate the datagraph simulator. This is the approach taken by gem5-

Aladdin [SRW14b]. However, in this approach, the overhead of switching is not negligible,

as the normal CPU will have to execute the user-space ioctl function before it gets to the

system call. Another way is to leverage gem5’s pseudo instructions, which is mapped to some

unused op-code and handled specially by some user-defined function in gem5. There will

still be some overhead as the normal CPU would first flush the pipeline before it executes

the pseudo instruction, but it is tolerable as long as these are infrequent – which is the case

in our setting. Therefore, we take the second approach in our framework.

The normal CPU will provide an execution context for the datagraph simulator, which

essentially maps a base to some memory address. This context is used by the datagraph

simulator to compute the correct memory address, as explained in section 2.2.3 and Equa-

tion 2.1.
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Gem5 Memory Hierarchy

Gem5 CPU Gem5 CPUDatagraph Simulator

Transition to Accelerated Region Return to non-accelerated Region

ISA Inst Gem5 Pseudo-Inst Accelerator InstLLVM-IR Inst

Figure 2.3: The timeline of a typical transition to accelerated region in replay.

2.3.2 Datagraph Simulator

Our baseline datagraph simulator emulates gem5 [BBB11] out-of-order CPU. It is also de-

signed to be flexible for accelerator architecture exploration. Section 2.4 will discuss this in

more detail.

Figure 2.4 shows the classical five-stage out-of-order pipeline of the datagraph simulator.

It differs from a real out-of-order CPU in the following aspects:

Datagraph Fetch Decode Rename Commit

Branch 
Predictor

Issue/
Execute/ 

Writeback

Function 
Units

Figure 2.4: Five-stage pipeline of the datagraph simulator.

• LLVM-IR assumes a virtual machine with an infinite number of registers, and the

datagraph simulator also makes this assumption. This means that the rename stage of
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the datagraph simulator will always succeed in finding an available physical register.

• Since the simulator executes a datagraph instead of a real code region, there is no in-

struction fetched from the memory and no instruction cache miss. This will cause some

inaccurate results, but for a loop which can be fit completely in the instruction cache,

the initial instruction cache miss may be negligible. Considering that an accelerator

usually targets some frequently executed loops, we believe that the effect of not having

an instruction cache can be negligible. Of course, if wanted, we can emulate with a

pseudo instruction cache on static LLVM-IR index rather than the program counter.

This can be integrated into the datagraph simulator for more accurate results.

• Another piece of information missing from the LLVM-IR datagraph is branch mis-

prediction and squashed instruction. This is an issue for some programs that exhibit

little branch predictability, and the cycles spending on squashing is not negligible. To

improve the accuracy, a branch predictor is integrated into the simulator and will stall

the fetch stage whenever a branch misprediction is detected.

2.4 Flexible Datagraph Transformation and Replay

To ensure rapid accelerator design exploration, it is crucial to provide flexible datagraph

transformation and replay. The user should be able to define new instructions, transform the

datagraph and extend the datagraph simulator without modifying existing ISA or hacking

into a real compiler.

The datagraph, although constructed from an LLVM-IR trace, is designed to extendable

and can contain any non-LLVM-IR nodes. New special nodes can be defined as long as they

implement the interface of the datagraph node, which is effectively the same as introducing

new instruction into the ISA.

The datagraph transformer is in charge of rewriting the datagraph to reflect any desired

architecture features. For example, some computation subgraphs can be offloaded to an

accelerator and replaced by a special node, as the case of CCA [CKP04]. A few other
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examples of how the datagraph can be transformed are given at the end of this section. To

leverage the high-level compiler information, the datagraph transformer is implemented as

an LLVM optimization pass and is seamlessly integrated with the LLVM framework. It is

flexible to be inherited from, and the user can require any necessary LLVM analysis to assist

the transformation.

The final step is to define the functionality of the new instructions, i.e., how should the

datagraph simulator handle these new instructions. First, if wanted, the datagraph trans-

former can provide a context for each inserted accelerator-related instruction. This context

contains information on how the instruction should be simulated, e.g., the latency, function

units required, etc. The user should also provide an execution function to the datagraph

simulator. During replay, when the simulator tries to execute an accelerator-related in-

struction, it will call the user-defined execution function with any provided context. The

execution function is in charge of completing the functionality of the instruction, interact-

ing with the simulator and reporting any statistics, e.g., register access, etc. Notice that

the datagraph simulator makes no assumption on the context and the execution function,

which further ensures flexibility. Also, the context/execution function extraction makes it

possible to integrate multiple accelerators in a single system, and enables cross-accelerator

exploration.

Accelerator Examples. Here are a few examples of how the datagraph can be transformed

for some existing transparent accelerators. Notice that we will provide a detailed case study

on CCA [CKP04] in section 3.2.

• SIMD (Loop Vectorization)

To perform loop vectorization, the transformer will first analyze the register and mem-

ory dependence of loops, either with the memdep analysis pass provided by LLVM

framework or using the dynamic trace. Loops with non-vectorizable memory depen-

dence or inter-iteration register dependence will be ignored. For profitable loops, every

v iterations will be merged, where v is the vectorization number. If there is discontin-

uous memory access, pack/unpack instructions will also be inserted.
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• CCA (Configurable Compute Accelerator)

CCA [CKP04] is a configurable matrix of function units integrated within the CPU,

which can execute some computation instructions but no memory access. The data-

graph transformation is straight-forward: detecting accelerable subgraphs and replac-

ing them with special cca instructions, as discussed in section 3.2.

• BERET

BERET [GFA11] differs from CCA in three ways. First, instead of a single CCA, there

are multiple SEBs in the architecture, and they can be chained in the configuration.

Second, the SEB can perform memory access. Third, if the speculation fails, the control

must be transferred back to the CPU.

To simulate BERET, the whole SEB configuration will be saved as the instruction

context, and the execution function will perform memory access through the interface

with the datagraph simulator. In case of missed speculation, the original subgraph will

not be removed, and the datagraph simulator will restart from the original one.

• DySER

DySER [GHN12] is another transparent CGRA accelerator for loops. Three key in-

structions are defined: dyLoad to set up the CGRA, dySend to send input data, and

dyRecv to retrieve the results. Unlike BERET, the DySER does not access memory

directly, which makes it simpler to implement the execution function. The main com-

plexity comes from the complicated transformation to split the loop into sending and

receiving phases. However, LLVM already provides dominance and post-dominance

frontier analysis, which should simplify the implementation of datagraph transforma-

tion.

• Chainsaw

Chainsaw [SKG16] maps a dependent chain into a temporal reused function unit and

uses bypassing to internalize the communication cost. It also organizes hot regions into

super-block to discover longer chains. To accurately simulate Chainsaw, the datagraph
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transformer will detect accelerable chains and construct the substitute instruction and

context. The context should contain enough information to capture the inter-chain

dependence.

• GPU-SIMT

Generally, GPU-SIMT model is not considered as a transparent accelerator. It is

possible to simulate GPU-SIMT with datagraph in our framework. The subgraphs

of each loop iteration can be handled by one thread, and the execution function will

simultaneously execute these subgraphs and insert necessary stalls for synchronization.
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CHAPTER 3

Results and Analysis

3.1 Verification

To show that our framework works, there two levels of verification to do. The first one is func-

tional verification. Taking the datagraph simulator as a black box reads and writes memory,

we must ensure that it accesses the correct memory location and outputs correct results.

The second one is performance verification. Compared with a baseline of a conventional

cycle-level simulator, the datagraph simulator must deliver similar simulation results.

3.1.1 Functional Verification

We leverage MachSuite [RAS14] as the benchmark to perform functional verification. It

provides different kernels with reference outputs. The output of the datagraph simulator is

compared with the reference output to verify that its functional correctness. Experiments

on all the 19 kernels of MachSuite proves that the datagraph simulator performs correct

memory accesses.

3.1.2 Performance Verification

The O3 CPU of the gem5 simulator [BBB11] is used as the baseline for performance verifica-

tion. Many metrics can be used for comparison, e.g., cache miss rate, branch misprediction

rate, etc. However, for simplicity, here we will focus on three metrics: the number of memory

read, the number of memory write, and the overall latency in simulated execution time. If

wanted, other statistics can also be collected from the datagraph simulator and compared.
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First, a micro-benchmark, Vertical [Now15], is tested. Each workload will test a spe-

cific characteristic of the simulator, e.g., memory latency, usage of function units, branch

prediction, data parallelism, etc. This helps to quickly verify that whether a particular com-

ponent of the datagraph simulator works appropriately or not. Table 3.1 lists a subset of

the micro-benchmark with a simple description.

Name Description

CCa Completely biased branch.

CCm Heavily biased branches.

CS1 Switch case statement of size 10 – different case each time.

CS3 Switch case statement of size 10 – different case every third time.

DP1f Simple data parallel loop – float arithmetic.

DPcvt Simple data parallel loop – simple data parallel loop float/double conversion.

ED1 Integer execution – length 1 dependency chain per iteration.

EF Floating-point execution – 8 independent instructions per iteration.

EI Integer execution – 8 independent computations per iteration .

EM1 Integer execution – length 1 dependency chain each loop (with multiplies).

EM5 Integer execution – length 5 dependency chain each loop (with multiplies).

MD Cache resident linked list traversal.

MI 8 streams of independent memory access, all cache resident.

MM Non-cache resident linked-list traversal.

MM st Non-cache resident linked-list traversal (with stores).

STc Repeatedly store in consecutive access - l1 cache.

STL2 Repeatedly store, l2 cache resident.

STL2b Repeatedly store, l2 resident (occasional stores).

Table 3.1: Vertical micro-benchmark.

Table 3.2 and Figure 3.1 shows the results of verification on Vertical benchmark. The

datagraph simulator can get average of 75.18% on simulated execution time. Notice that

for the EM5 benchmark, a bug in gem5 causes the multiplication always dependent on the
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previous multiplication and thus not parallelizable. However, the datagraph simulator will

be able to detect the parallelism between multiplication if there is no data dependence and

produces a much smaller simulated latency.

Write Read Execution Time MicroOp

CCa 100.00% 100.00% 66.46% 37.50%

CCm 100.00% 100.00% 66.67% 37.51%

CS1 100.00% 100.00% 66.93% 32.47%

CS3 100.00% 100.00% 58.89% 32.94%

DP1f 95.87% 96.96% 64.55% 71.43%

DPcvt 100.00% 100.00% 64.67% 64.28%

ED1 100.00% 100.00% 66.67% 10.53%

EF 100.00% 100.00% 79.66% 73.33%

EI 100.00% 100.00% 65.20% 61.11%

EM1 100.00% 100.00% 96.18% 40.00%

EM5 100.00% 100.00% 41.67% 36.36%

MD 100.00% 95.12% 76.94% 99.94%

MI 100.00% 99.76% 90.09% 98.44%

MM 100.00% 99.77% 77.89% 99.94%

MM st 100.00% 99.95% 82.72% 85.67%

STL2 96.80% 100.00% 95.55% 68.75%

STL2b 100.00% 97.31% 97.08% 74.89%

STc 100.00% 100.00% 95.43% 59.97%

Average 99.59% 99.38% 75.18% 60.28%

Table 3.2: Verification of Vertical micro-benchmark.

For this micro-benchmark, since the workload is very simple, there are generally few

register spills and fills, as we can see from the highly accurate results on the number of

memory reads and writes. The primary source of error comes from the difference between

the number of LLVM-IR instructions in the datagraph and the number of micro-operations
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Figure 3.1: Verification of Vertical micro-benchmark.

simulated in gem5. After optimization, an LLVM-IR instruction will be compiled to some ISA

instructions in code generation phase. In the decode stage of a CPU, an ISA instruction is

further decomposed into one or more micro-operations. For example, in the x86 architecture,

if one of the operands is an immediate number, gem5 will decode the add instruction into

two micro-operations: one to load the immediate number into a register, and the other to

add two registers together. This generally means that the number of micro-operations is

higher than the number of LLVM-IR instructions, and results in less simulated execution

time. Table 3.2 shows that on average the number of LLVM-IR instructions is only 60.28%

of the number of micro-operations.

To mitigate this effect, one possible solution is to transform the datagraph to be more

consistent with the actual micro-operations executed in the CPU. For example, for each
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immediate number operand of an add node, we can insert a “fake” node into the datagraph

and make the add dependent on this new node. Another more straightforward way is to

adjust the latency of some LLVM-IR instructions based on how they are going to be decoded.

Also, we can change some parameters of the datagraph simulator, e.g., issue width, etc. to

reflect the resources occupied by additional micro-operations. This can be explored in future

works.

Table 3.3 and Figure 3.2 shows the results of verification on MachSuite benchmark. The

datagraph simulator can get average of 53.07% on simulated execution time. The accuracy

drops due to the following reasons:

• As the program gets more complicated, there are more optimization opportunities in

code generate phase, which increases the gap between the number of LLVM-IR instruc-

tions and micro-operations. Table 3.3 shows that on average the number of LLVM-IR

instructions is only 55.79% of the number of micro-operations, which partially explains

why the simulated execution time drops to 53.07%.

• The number of memory reads and writes reported by the datagraph simulator is only

one-third of those from the baseline. The extra memory access comes from register

spills and fills. LLVM assumes a virtual machine with an infinite number of registers.

However, the number of registers in the ISA is finite, and the compiler will insert some

code to spill registers to stack or load them back. Although some of the memory access

may hit the L1 cache, it still consumes the limited capacity of the cache and may affect

other memory access.

Possible solutions to reduce the gap between the number of LLVM-IR instructions and

micro-operations has been discussed above. For effect from register spills, the datagraph

simulator can monitor the number of alive values, and if it exceeds the number of ISA

registers, either a simple register allocator can be used to spill some values to the stack,

or some other penalties can be introduced to achieve similar effects. However, notice that

register spills is not a characteristic of the program but the architecture, and for some

register-rich accelerators it may be negligible.
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Write Read Execution Time MicroOp

BFS-QUEUE 1.88% 22.57% 47.15% 51.99%

FFT-STRIDE 52.77% 39.24% 59.90% 53.47%

FFT-TRANSPOSE 24.71% 11.98% 16.91% 13.48%

GEMM-BLOCKED 76.03% 43.24% 67.82% 68.96%

GEMM-NCUBED 21.60% 47.07% 57.75% 84.05%

KMP 100.00% 20.07% 48.43% 48.19%

MD-GRID 3.07% 15.65% 41.00% 39.46%

MD-KNN 2.40% 25.04% 50.91% 65.98%

NW 23.10% 30.31% 69.45% 68.12%

SPMV-CRS 3.00% 33.02% 57.04% 56.69%

STENCIL-2D 35.52% 44.52% 36.24% 35.59%

STENCIL-3D 44.35% 48.60% 86.53% 86.45%

VITERBI 11.82% 52.90% 50.84% 52.77%

Average 30.79% 33.40% 53.07% 55.79%

Table 3.3: Verification of MachSuite benchmark.

3.2 Case Study: CCA

To demonstrate the flexibility how the datagraph can be used to explore accelerator design,

a case study on configurable compute accelerator (CCA) [CKP04] is conducted. A CCA

contains an array of function units and can be configured to execute some subgraphs effi-

ciently. Figure 3.3 shows the block diagram of a depth 7 CCA. The idea is to explore how

integrating a CCA with a general processor architecture improves the performance.

The LLVM-IR datagraph is transformed to utilize the new CCA. An algorithm similar

to the original one proposed in [CKP04] is implemented to detect subgraphs that can be

offloaded to the CCA. A subgraph is accelerable if it satisfies the following constraints:

• It cannot span multiple basic blocks, i.e., there is not control dependence within the
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Figure 3.2: Verification of MachSuite benchmark.

subgraph.

• It is not beyond the capability of the CCA. First, it can not contain any operation

which can not be handled by the CCA, e.g., memory access, etc. Also, it should be

able to be handled by the limited hardware resources of CCA, e.g., number of input

and output ports, number of functional units.

Figure 3.4 shows an example of how the datagraph is transformed. This comes from

a basic block in NW workload of MachSuite benchmark [RAS14]. The red nodes form a

subgraph that is detected and can be offloaded to CCA. After transformed, each subgraph is

replaced by a special node cca. Each cca node is associated with a context, which contains

information to help the datagraph simulator simulate it, e.g., the offloaded instructions, the
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Figure 3.3: Block diagram of the depth 7 CCA. [CKP04]

computation latency, etc. The transformed datagraph is then sent into the datagraph sim-

ulator, and the simulation results can be compared with those of untransformed datagraph

to determine the speedup.

Table 3.4 shows the cumulative percentage of dynamic subgraphs in MachSuite bench-

mark with varying depth. Here the depth of a subgraph is defined as the length of the longest

dependency chain. With depth increasing from 2 to 4, the cumulative percentage increases

from 78.05% to 93.57%. This suggests that a CCA with four layers of function units may be

a good choice to minimize the area overhead while covering the majority of subgraphs.

Figure 3.5 shows the performance of CCAs with different maximum depth supportable.

The subgraphs are identified using the dynamic discovery algorithm. The speedups are

computed as the ratio between the simulated execution time of the original datagraph and

the transformed one. For many workloads, increasing the depth of the CCA doesn’t improve

the performance, as most of the accelerable subgraphs have a depth less than 5, e.g., BFS-

QUEUE and KMP. Sometimes, larger CCA may even hurt the performance, as for MD-KNN,

etc. This is because the heuristic used by the dynamic subgraph discovery algorithm will
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(a) A datagraph before transformed.
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(b) A datagraph after transformed.

Figure 3.4: An example of CCA transformed.

aggressively offload larger subgraphs to the CCA, which may reduce the size of remaining

subgraphs, making them unprofitable to be offloaded and resulting in less coverage.

The case study on CCA shows that our framework can efficiently explore accelerator

design space with reduced complexity.

3.3 Comparison with Other Work

There are some other datagraph-based simulators, and in this section, we discuss the simi-

larity and difference between our framework and others.

Aladdin [SRW14a] and gem5-Aladdin [SRW14b] are both simulators based on LLVM-IR

trace. They both construct the LLVM-IR datagraph and use it to simulate the performance

and energy. The first one focuses on the performance estimation, while the second one is

integrated into gem5 and takes memory bandwidth and latency into consideration. Their

features can be summarized as the following.
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Depth 2 3 4 5 6 7

BFS-QUEUE 97.61% 100.00% 100.00% 100.00% 100.00% 100.00%

FFT-STRIDE 92.54% 92.54% 92.54% 100.00% 100.00% 100.00%

FFT-TRANSPOSE 64.39% 91.30% 95.52% 95.52% 95.52% 100.00%

GEMM-BLOCKED 94.12% 94.77% 100.00% 100.00% 100.00% 100.00%

GEMM-NCUBED 15.24% 97.28% 97.28% 97.28% 97.28% 100.00%

KMP 80.23% 80.23% 100.00% 100.00% 100.00% 100.00%

MD-GRID 78.48% 78.81% 89.46% 89.52% 89.52% 100.00%

MD-KNN 82.42% 82.42% 82.42% 82.42% 82.42% 100.00%

NW 69.43% 84.80% 84.94% 99.88% 100.00% 100.00%

SPMV-CRS 93.54% 93.54% 98.22% 100.00% 100.00% 100.00%

STENCIL-2D 68.42% 77.38% 91.52% 91.52% 91.99% 100.00%

STENCIL-3D 87.95% 88.72% 89.13% 89.50% 89.50% 100.00%

VITERBI 90.31% 95.30% 95.33% 95.33% 95.33% 100.00%

Average 78.05% 89.01% 93.57% 95.46% 95.50% 100.00%

Table 3.4: Cummulative percentage of dynamic subgraph with varying depth.

• Both Aladdin and gem5-Aladdin are targeting for a fixed-function accelerator, i.e., the

whole datagraph will be executed on a specialized accelerator.

• For gem5-Aladdin, the CPU communicates with the fixed-function accelerator via

ioctl system call and DMA. It cannot model a core-integrated accelerator and capture

the tight interaction between them.

• The datagraph transformation is done outside the LLVM framework, which means it

can only leverage the limited compiler information from the trace.

To summarize, Aladdin and gem5-Aladdin enable design space exploration for exposed

fixed function accelerators with limited compiler support.

Transformable dependence graph (TDG) [NGS15] is also a datagraph-based simulator.
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Figure 3.5: Varying the CCA configuration.

Similar to our framework, it can also transform the datagraph to reflect characteristics of

different architecture and enable cross-domain comparison and design-space exploration.

TDG’s datagraph is composed of micro-operation and low-level hardware events, and it can

achieve very accurate simulation results (< 4% avg. error) [NGS15]. However, working on

micro-operation level loses some high-level compiler information, and makes it more difficult

to transform the datagraph.

Chainsaw [SKG16] also comes with a simulator specialized for its architecture. It builds

chains from the instruction trace and uses gem5’s ruby system to simulate for memory

latency.

Needle [KSS17] is another LLVM-based framework focused on the frontend. A similar

LLVM-IR trace will be used to detect frequent basic blocks, which will be outlined into
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a separate function with software speculation. The outlined function enables optimization

opportunities on super-blocks for the backend. However, it does not provide a simulation

backend.

3.3.1 Strength

Table 3.5 lists the comparison between the existing frameworks and ours on four dimensions,

full compiler support, simulation backend, cross-accelerator exploration and target acceler-

ator paradigm. Aladdin and gem5-Aladdin are targeting for exposed accelerators, so the

cross-accelerator dimension is not applicable for them. As for Needle, since it does not come

with a simulation backend, this dimension is also marked as not applicable.

Compared with existing frameworks, our datagraph simulator is the first one to provide

end-to-end cross-accelerator exploration with high-level compiler information. Among the

previous works, the most similar one is TDG, which only lacks the compiler information.

However, as discussed in section 2.4, some existing compiler analysis passes, e.g., dominance

and post-dominance frontier analysis, should be useful for transforming the datagraph. More

importantly, combining the static compiler analysis with dynamic information from the

datagraph may provide some insights for new accelerator designs.

Framework Compiler Support Sim-Backend Cross-Accel Target

Aladdin [SRW14a] X X N/A Exposed

gem5-Aladdin [SRW14b] X X N/A Exposed

TDG [NGS15] X X Transparent

Chainsaw [SKG16] X Transparent

Needle [KSS17] X N/A Transparent

This thesis X X X Transparent

Table 3.5: Comparison with existing frameworks.
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3.3.2 Limitations

One significant limitation of our framework is that compared with ISA, LLVM-IR is still

a high-level abstraction, and the verification results suffer from this gap. It requires some

efforts to mitigate this effect and bring the simulation results more closely to the baseline

out-of-order processor. However, in the sense of estimating accelerators’ speedup, this effect

may not be an obstacle, because accelerators tend to eliminate processor bottlenecks like

register pressure anyway. As evidence of this, the estimated speedup of CCA is reasonable

compared with the original paper. More accelerator architectures can be examined for further

validation.

There are also some accelerator architectures that cannot be modeled by the existing

implementation. Like any other trace-based simulators, our framework does not support

accelerators for multi-thread workloads. This is because the interaction between threads

is usually indeterminate, and adding accelerators to the system will change the instruction

stream of some threads and invalidate the collected trace.

For some architectures, the current framework is not flexible enough. For example, the

decoupled execution function can only interact with memory system through CPU’s cache

hierarchy. For accelerators which are more independent from the CPU, or even has its own

memory system, it requires some extension to the datagraph simulation. An example is

GPU-SIMT model, which requires some complicate datagraph transformation and replay

control.
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CHAPTER 4

Conclusion and Future Works

4.1 Conclusion

In this thesis, we present a flexible LLVM-IR datagraph-based simulator for transparent

accelerators. On the Vertical micro-benchmark, the new framework achieved average 75.18%

performance of the baseline out-of-order processor simulator. On the Machsuite benchmark,

the performance accuracy drops to 53.07% due to the effect of register spills. We also

demonstrate the flexibility and modeling capacity with a case study which models the CCA

micro-architecture. With the high-level compiler information from the LLVM framework,

the datagraph is transformed to utilize CCA without extending the ISA or modifying the

compiler.

4.2 Future Works

One of the future works involves validation on more complicated existing accelerator micro-

architecture, e.g., Dyser [GHN12], BERET [GFA11], etc. This will also lay the groundwork

for all the research questions of multiple accelerators.

The replayable fraction of a workload is limited since the replay is performed at the

function level. However, this is relatively conservative as a function may call a library

function but also contains a fully traced loop which is of interest. A more fine-grained replay

scheme is to automatically detect some fully traced regions of interest and outline them into

separate functions.

It is also crucial to bring power estimation into the datagraph simulator to make it
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practical to use. McPAT [LAS09], a state-of-the-art general-purpose processor power model,

is a good candidate.

Another natural extension would be support systems with multiple processors. Multiple

datagraphs can be simulated on separate processors, and a particular interface can be added

to allow temporal multiplexing accelerators among processors.

Finally, a long-term goal is to extend this framework for other accelerator paradigms.

For example, a particular interface to bypass the cache hierarchy and communicate directly

with other subsystems would enable the modeling of standalone accelerators.
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